

A Case Study in Web Application Performance Measurement

by

Nitin Goyal
B.Tech., Baldev Ram Mirdha Institute of Technology, 2011

A Master Project Report Submitted in Partial Fulfillment
of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

â Nitin Goyal, 2015
University of Victoria

All rights reserved. This report may not be reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

ii

A Case Study In Web Application Performance Measurement

by

Nitin Goyal
B.Tech., Baldev Ram Mirdha Institute of Technology, 2011

Supervisory Committee

Dr. Daniel Hoffman, Supervisor

(Department of Computer Science)

Dr. Sudhakar Ganti, Departmental Member

(Department of Computer Science)

iii

Supervisory Committee

Dr. Daniel Hoffman, Supervisor

(Department of Computer Science)

Dr. Sudhakar Ganti, Departmental Member

(Department of Computer Science)

Abstract

The Computational Quiz Generation (CQG) system is a web application that provides online

programming quizzes. CQG has been used in CSC 111, CSC 116, CSC 361, SEng 265 and

SEng360. In the future we want to use CGQ in larger sections but due to the unavailability

of performance metrics on CQG, it would be risky. We want to get quantitative performance

data. We are interested in identifying maximum number of users supported stably by CQG,

quiz start up time and if Java questions are expensive. Hence performance testing was

conducted on CQG using Apache JMeter. Several tests were conducted to collect

quantitative performance data relating to speed, stability and scalability. This project is a

deployment of the test infrastructure on CGQ that would benefit the stakeholders in CQG

to better determine and understand problems related to the maximum number of

supported users, start up delays, expensive questions, etc. Experimental results have shown

that the quiz start up time is high and depends on the size of the question library. It was

also found that Java questions are much more expensive to use than C, C++ and Python.

Performance testing has also uncovered the modules in CGQ that requiring optimization.

iv

Table of Contents

Abstract ... iii

Table of Contents .. iv

Table of Figures ... vi

Acknowledgements .. vii

1.0 Introduction ... 1

1.1 CQG system ... 1

1.2 Problem statement ... 2

1.2.1 Number of users supported (Scalability and Stability) .. 2

1.2.2 Expected Start up delays (Speed) .. 2

1.2.3 Question cost by language .. 2

1.2.4 Cost of quiz logging ... 3

1.3 Use in large sections .. 3

1.4 Solution approach ... 3

1.5 Experimental results.. 4

1.6 My Contribution .. 4

1.7 Organisation of the report .. 5

2.0 Background .. 6

2.1 JMeter ... 6

2.1.1 Introduction... 6

2.1.2 Thread group ... 6

2.1.3 Sampler ... 7

2.1.4 Timer ... 7

2.1.5 Listener .. 7

2.2 CQG ... 12

2.3 HTTP .. 13

2.3.1 GET .. 13

2.3.2 HTTP Persistent connection .. 13

v

2.4 TCP ... 16

2.4.1 Three-Way Handshake .. 16

2.4.2 PDU (Protocol Data Unit) .. 16

2.5 HTML ... 17

3.0 Experimental Design .. 18

3.1 Dominant control variables ... 18

3.2 Test Setup .. 18

3.2.1 Local server setup.. 18

3.2.2 SEng server setup .. 19

3.3 JMeter Delay Experiment .. 20

3.3.1 Constant Timer .. 20

3.3.2 Uniform Random Timer ... 22

3.4 Test Run’s design ... 24

4.0 Experimental Results ... 25

5.0 Conclusion ... 32

6.0 Future Work ... 33

7.0 References ... 34

vi

Table of Figures

Figure 1 : CGQ Quiz for Linear Search .. 1

Figure 2 : Latency-Sample time Diagram .. 8

Figure 3 : View Results in Table .. 9

Figure 4: Wireshark Experiment to confirm JMeter latency & Sample time 11

Figure 5: Wireshark Experiment to confirm HTTP and TCP (3-way handshake) 15

Figure 6: TCP three way handshake ... 16

Figure 7 : Local server setup using crossover cable ... 18

Figure 8: SEng Server Setup .. 19

Figure 9 : Constant Timer - Wireshark Dump ... 21

Figure 10 : Uniform Random Timer: Wireshark Dump .. 23

vii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Daniel Hoffman for the

useful comments, remarks and engagement through the learning process of this master’s

report. I would like to thank him for suggesting the project topic and for the support on the

way.

Furthermore, I would like to thank my fiancée and parents who have supported me

throughout the entire process, both by keeping me harmonious and helping me putting

pieces together. I will be grateful forever for your love.

1

1.0 Introduction

1.1 CQG system

Computational Quiz Generation (CQG) is an online quiz generation framework focussing on

code reading. Figure 1 shows a Python quiz where the student entered the standard output.

The student then clicks the Check answer button and the quiz returns a Correct message as

the entered value is correct.

Figure 1 : CGQ Quiz in Python

2

CQG is implemented with HTML forms and Python. CQG has been used in Computer Science

(CSC 111, CSC116 and CSC 361) and Software Engineering (SEng 265, SEng 360) course

offerings. CGQ quizzes have been developed for C, C++, Java and Python languages.

1.2 Problem statement

While CQG has been used in many CSC and SEng courses, we have no quantitative

performance data on CQG. In particular we are interested in finding out the performance

metrics for the following questions:

1.2.1 Number of users supported (Scalability and Stability)

We want to identify the number of users CQG can support stably. A Performance metric for

the number of users supported and the corresponding delays and CPU utilizations will help

us to better configure the hosting servers.

1.2.2 Expected Start up delays (Speed)

CQG quizzes experience delays while starting up for the first time. We are interested in

identifying and quantifying these delays. This is important to know as we want to minimize

the start-up delays to make CQG quizzes load faster. We are also interested in identifying

the actions that causes these delays in CQG.

1.2.3 Question cost by language

CQG supports programming quizzes for C, C++, Java and Python. Answer checking in CQG is

usually very fast as the code is precompiled. However we are interested in testing whether

the performance metrics are different for different languages. We expect that Java

3

questions are expensive due to the startup time and high memory usage of JVM as

compared to C, C++ or Python.

1.2.4 Cost of quiz logging

For each user in CQG an XML log file is generated. These log files captures users actions for

answer submission or moving to a next question. For each action performed by the user a

write operation is triggered on the XML file. We are interested in identifying if this approach

of logging actions is expensive or not.

1.3 Use in large sections

The above mentioned problems are important as we want to use CGQ in larger sections. To

do so we need more information about CQG behaviour under load.

With the knowledge of these performance metrics it would be helpful to better estimate

the load on the server. This information can be advantageous to make better decisions

about server configuration. Performance testing will also identify the places of

improvement in CGQ so that it can be optimized in the future.

1.4 Solution approach

To better understand and measure CQG performance we tested it using Apache JMeter.

The types of performance testing we conducted are:

1. Load testing: Checks the application’s ability to perform under anticipated user

loads.

4

2. Stress testing: Involves testing the application under extreme workloads to identify

the breaking point of the application.

1.5 Experimental results

The results from the performance tests have provided us quantitative data relating to

number of users, minimum/maximum Response time, size of HTTP GET/Reply and CPU

utilization.

1.6 My Contribution

I conducted Performance testing of CQG using Apache JMeter to analyse its scalability and

load endurance capacity. The contributions are:

¶ Evaluation of CGQ start-up lag time

¶ Determination of the maximum number of users CQG could support stably

¶ Identification of which questions are expensive

¶ Measurement of quiz logging cost

¶ Determination of the effect of question library size on quiz start up time:

JMeter components are applied and understood by doing a few initial experiments and then

later mapped to CQG accordingly. The primary focus while creating the test runs was to

identify the answers for the problems discussed in the previous section. After conducting

the measurements and analysis we were able to provide quantitative data on the

performance characteristics of CQG.

5

1.7 Organisation of the report

In Chapter 2, Apache JMeter and CQG are introduced with the definition of components and

concepts used in the experiments. Information for HTTP, TCP and HTML is also presented

to form the background for networking concepts. Chapter 3 describes the experimental

design used in the performance measurement and presents the initial experiments

conducted to understand JMeter features. Chapter 4 presents the experiment results,

Chapter 5 provides the conclusion from the analysis of the experiment results and Chapter

6 presents the Future work.

6

2.0 Background

2.1 JMeter

2.1.1 Introduction

Apache JMeter is an Apache project [1] that provides a load testing tool for analyzing and

measuring the performance of a variety of services, with a focus on web applications.

JMeter can be used to generate a variety of loads on a server by generating HTTP requests

that hit the specified server. JMeter supports variable parameterization, assertions

(response validation), per Thread cookies, configuration variables and a variety of report

generation features.

A test plan can describes the steps that JMeter will execute when run. A complete test plan

can have one or more thread groups, logic controllers, listeners and timers.

2.1.2 Thread group

A thread group consists of controllers and samplers under it. There are certain controls

defined in a thread group are:

¶ Number of threads: It can be considered as the number of users.

¶ Ramp-up period: The time taken by the JMeter to start the total number of threads.

For example, if there are 10 threads, and the ramp up period is 50 seconds, then

each thread will start 5=50/10 seconds after the previous thread has begun.

7

2.1.3 Sampler

The Sampler tells the JMeter to send the request to a specified server and wait for a

response. We are using HTTP Request sampler, which allows JMeter to send an HTTP/HTTPS

request.

2.1.4 Timer

Timer are used to introduce delay before each sampler. Without a timer, JMeter might

overwhelm the server by making too many requests in a very short amount of time. We are

using Constant Timer and Uniform Random Timer for our experiments.

2.1.5 Listener

The Listener provides access to the information that JMeter has collected about the test

case while JMeter runs. We are using View Results in Table and Summary Report listener for

our experiments.

2.1.5.1 View Result in Table

The concept of latency and sample time can be illustrated by a timing diagram as shown in

Figure 1.

8

Figure 2 : Latency-Sample time Diagram

The columns contained in Result table as shown in Figure 2 can be defined as:

¶ Sample time: The time from invoking the request to the last byte of the response

coming back.

¶ Bytes: The size of the data in the sample response returned from the server.

¶ Latency Time: The time from invoking the request to the first packet of the response

coming back.

¶ Connection Time: The time taken to establish the connection with including SSL

handshake.

9

The columns Sample #, Start Time, Thread Name, Label and Status are not used in this

report.

Figure 3 : View Results in Table

To confirm the correctness of results as shown in Figure 2. We created a simple CQG quiz

containing two questions. The Submit and next question are emulated using the HTTP

request sampler. Verification of the columns of View Result Table related to latency and

10

sample time is done with the help of a packet sniffing tool called Wireshark as shown in

Figure 3.

As seen in Figure 2, Sample 1 indicates the Sample time, Latency as 112 ms which can be

confirmed from the Wireshark experiment as shown in Figure 3 with packet number 8.

It indicates the time as approximately 111 ms excluding the 1 ms connection time that can

add up to 112 ms, in our case Latency and Sample time is the same as only one HTTP

segment gets returns from the server. Bytes represents the size of the response for the

request from the server. Connection time is 1 ms as the connection was very fast.

11

Figure 4: Wireshark Experiment to confirm JMeter latency & Sample time

12

2.1.5.2 Summary Report

The Summary report contains a row for each differently named request in the test. The

Summary report provides information about the minimum/maximum response time and

throughput.

¶ Average: The mean response time in milliseconds for a particular HTTP request.

¶ Min: Minimum response time taken by the request.

¶ Max: Maximum response time taken by the request.

¶ Throughput: The number of requests per unit of time that are sent to the server

under test.

We are particularly focused on identifying the HTTP requests for which the Maximum

response time is greater than 5 seconds. These requests will provide information about the

CQG load time.

2.2 CQG

CQG offers quizzes in practice and marked mode. In Practice mode, there is no User

authentication and quiz logging. Quizzes under marked mode are authenticated by the login

credentials provided to the students at the beginning of the term. Marked quizzes are

logged on the server for each action performed by the students on the client. Quiz logs are

then used for marks calculation.

13

In terms of CQG, we define the JMeter variables which are used to perform different

experiments on the server with varying load and number of users.

¶ Number of threads: Number of students/users attempting the quiz

¶ Ramp-up Period: Time taken from quiz start to see the first question.

¶ Timer: Delay between each pair of submit actions.

2.3 HTTP

Hypertext Transfer Protocol is an underlying protocol used by World Wide Web. It defines

how messages are formatted and transmitted over the internet. It also formulates the

specification of the actions that web servers and browsers should take in response to

various commands.

2.3.1 GET

Prominent request methods in HTTP are GET, POST and PUT. CQG uses only GET method to

interact with the server. This can be confirmed by packet no. 4 of Figure 4. A request

containing the GET method has name/value pairs in the URL which requests data from a

specified resource.

2.3.2 HTTP Persistent connection

Persistent connection or HTTP Keep-alive is the idea of using a single TCP connection to send

and receive multiple HTTP request/response. CQG uses HTTP 1.1 under which all the

connections are considered persistent unless declared otherwise. JMeter has the

functionality to define HTTP requests with the Keep-alive tag that is responsible for

14

persistent connections. HTTP 1.1 behaviour can be confirmed from packet 4 of Figure 4. A

TCP connection is established only once in the beginning of the quiz as shown in packet 1

and 2. This connection is then used by the subsequent HTTP requests in packet 12 and 16.

15

Figure 5: Wireshark Experiment to confirm HTTP and TCP (3-way handshake)

16

2.4 TCP

TCP enables two hosts to establish a connection and exchange streams of data. Using

Wireshark we confirmed that a single TCP connection is used to handle multiple quiz submit

presses as shown in Figure 4.

2.4.1 Three-Way Handshake

A three-step method is used in a TCP/IP network to create a connection. This connection

requires both client and server to exchange SYN and ACK packets before actual data

communication begins. The Three-way handshake is shown in Figure 5 and confirmed from

packets 1, 2 and 3 of Figure 4.

Figure 6: TCP three way handshake

2.4.2 PDU (Protocol Data Unit)

PDU is the information delivered as a unit among peer entities of network and that may

contain control information, such as address information or user data [4].

17

2.5 HTML

HTML or Hyper Text Mark-up language in CQG is very light-weight and does not contain any

images or JavaScript. HTML forms are used with no client side embedded code and are

generated on the server side using web2py .Each HTML page in CQG contains textboxes for

entering the expected input or output and buttons for submitting/checking the answers and

switching between questions.

18

3.0 Experimental Design

3.1 Dominant control variables

The control variables that are used in the experiments to vary the load are:

¶ Ramp-up

¶ Timer

¶ Number of threads

¶ Quiz Content: Quizzes containing C, Python and Java questions.

3.2 Test Setup

Performance tests are run with two different setups:

3.2.1 Local server setup

In this setup, one machine (Asia) is the test server on which CQG is running over port 8081.

Asia is connected by a cross-over cable to another machine (India) on which JMeter is

running to generate traffic. Figure 6 shows the Local server setup.

Figure 7 : Local server setup using crossover cable

19

Configuration of machines in local setup is shown in Table 1.

Machine name India Asia

Processor Intel i7-2600 @3.40 GHz Intel Core 2 Duo @2.33 GHz

RAM 4 GB 2 GB

Operating System Ubuntu 14.04 Ubuntu 14.04

CPU Core 8 2

Table 1: Local Server Setup

3.2.2 SEng server setup

 In this setup, a virtual server (cqg.seng.uvic.ca) is deployed using Proxmox. Proxmox is a

server virtualization management solution. This server is publically accessible and runs CQG

on port 8081. Machine India is running JMeter which targets the virtual server. Figure 7

shows the SEng server setup.

Figure 8: SEng Server Setup

Configuration of the server is shown in Table 2.

20

Server Name cqg.seng.uvic.ca

Processor KVM 64 bit

RAM Variable (512 MB – 1 GB)

Operating System Scientific Linux 6.7

CPU Core 1 core

Table 2: SEng Server Configuration

3.3 JMeter Delay Experiment

To measure the JMeter delay accuracy we conducted several experiments. We tested

Constant Timer and Uniform Random Timer using Wireshark.

3.3.1 Constant Timer

Constant timer introduces a fixed delay between consecutive requests of the same thread.

This is useful when we want to have each thread pause for the same amount of time. The

configuration used for this experiment is:

¶ HTTP Sampler : 3 identical requests to the CQG static page

¶ Number of Threads : 1

¶ Thread Delay (ms) : 1, 10, 100, 1000

We ran several tests using different Thread delays and measured the delay accuracy using

Wireshark. We found the Constant Timer accurate. A Wireshark dump for a thread delay of

100 ms in Constant timer is shown in Figure 8. GET requests from Packet no. 4, 10, 15 and

20 shows the delay of 100 ms.

21

0

Figure 9 : Constant Timer - Wireshark Dump

22

3.3.2 Uniform Random Timer

This timer pauses each thread request for a random amount of time. It will delay

consecutive requests of the same thread by a random interval within lower and upper

bounds. Uniform Random Timer consists of two components:

¶ Random Delay maximum (ms): Maximum random number of milliseconds to pause.

¶ Constant Delay Offset (ms): Number of milliseconds to pause in addition to the

random delay.

Total delay is the sum of the Random value and constant offset value.

Example: If Constant delay offset is 1000 ms and Random Delay maximum is 200 ms than

all threads will be delayed between 1000 ms and 1200 ms.

The configuration used for this experiment is:

¶ HTTP Sampler : 3 identical requests to the CQG static Page

¶ Number of Threads : 1

¶ Constant Delay Offset/Random Delay Maximum (ms) : 1000/1, 1000/10, 1000/100

We ran several experiments using the defined configuration and found Uniform Random

Timer to be very accurate and random. A Wireshark dump for the experiment with Constant

Delay Offset/Random Delay Maximum of 1000/100 ms is shown in Figure 9. GET requests

from Packet no. 4, 10, 15 and 20 shows random delay of 1059, 1029 and 1022 ms.

23

Figure 10 : Uniform Random Timer: Wireshark Dump

24

3.4 ¢Ŝǎǘ wǳƴΩǎ ŘŜǎƛƎƴ

Each test run contains one thread group. Each thread group will contain one thread per

student. We divide the quiz into N chunks, where one chunk represents an HTTP request

that hits the specified server. We are using same questions, answers, and order and inter-

submit delay in each thread group.

We conducted several experiments on the local and SEng server. Experiments on the local

and SEng server are identical in the configuration. In each experiment we changed either

the number of threads or the quiz language (C, Python and Java). The constant and varying

parameters in the tests are:

1. Constant parameters

Ramp-up time: 30 seconds

Constant Timer: 100 ms

Number of questions in the quiz: 2

2. Varying parameters

Number of Threads: 30, 100-190 (difference of 10), 200-1000 (difference of 100)

Language: C, Python and Java

Quiz Authentication: True or False

Quiz Logging: True or False

25

4.0 Experimental Results

In this section, we present the results that will enable us to answer the questions that are

introduced in the Introduction.

Table 3 shows the results analysed from running experiments on local server for C language

CQG quiz.

Table 3 : Mean response time in Local server using C quizzes

No
. o

f th
re

ad
s:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

St
art

Qu
iz

12
1

12
9

58
26

15
80

7
25

91
1

35
98

5
46

07
8

56
17

3
56

45
0

76
81

0
86

90
2

Au
the

nti
ca

tio
n

10
9

28
28

30
29

29
29

28
29

28

An
sw

er
Ch

ec
k-Q

1
12

18
31

34
32

34
33

34
33

33
34

Ne
xtQ

ue
sti

on
5

5
12

12
12

12
11

11
11

11
11

An
sw

er
Ch

ec
k-Q

2
13

12
33

33
34

34
33

35
36

33
34

No
. o

f th
re

ad
s:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

St
art

Qu
iz

11
8

12
5

58
9

85
0

11
08

12
81

14
53

13
59

14
51

14
11

13
48

Au
the

nti
ca

tio
n

9
9

11
11

11
10

11
10

8
8

8

An
sw

er
Ch

ec
k-Q

1
12

12
12

13
16

13
14

17
13

14
13

Ne
xtQ

ue
sti

on
5

4
4

4
4

4
4

4
4

4
4

An
sw

er
Ch

ec
k-Q

2
12

12
12

12
13

13
13

13
13

13
13

No
. o

f th
re

ad
s:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

St
art

Qu
iz

19
3

24
3

10
67

4
30

42
5

50
41

8
70

54
9

90
81

0
11

07
98

11
11

48
15

18
57

17
17

96

Au
the

nti
ca

tio
n

15
16

94
96

91
93

18
7

11
0

12
7

97
11

3

An
sw

er
Ch

ec
k-Q

1
14

27
81

10
8

83
11

3
12

3
11

1
10

1
11

9
13

7

Ne
xtQ

ue
sti

on
7

15
58

62
49

49
60

65
56

59
76

An
sw

er
Ch

ec
k-Q

2
23

29
80

11
5

89
11

9
12

6
11

0
10

8
10

1
14

5

Me
an

 R
es

po
ns

e t
im

e(
ms

)

Mi
nim

um
 R

es
po

ns
e t

im
e(

ms
)

Ma
xim

um
 R

es
po

ns
e t

im
e(

ms
)

26

As can been be seen from Table 3, Mean response time increases rapidly from 100 threads

to 200 threads. To narrow down the specific number of thread at which the response time

is increased rapidly we conducted experiments with threads in the range of 110-190 with

difference of 10 as shown in Graph 1. We found that at 170 threads the mean response

time increases rapidly.

Graph 1 : Increase in mean response time at Quiz Start for 170 threads.

We conducted experiments using different languages for the CQG quizzes (C, Python and

Java). Table 4 shows the difference in the response time for these languages. It was found

that the answer checking is expensive in Java quizzes as compared to C and Python. The

difference between mean response times can be seen from the rows with label

AnswerCheck-Q1 and AnswerCheck-Q1 in section 1, 2 and 3.

27

Table 4: Difference between mean response time for C, Python and Java quizzes on Local
server.

To check if quiz logging has any effect on performance we conducted experiments using C

language quizzes on SEng server. Table 6 shows the results with quiz logging and without it.

N
o.

 o
f t

hr
ea

ds
:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

S
ta

rtQ
ui

z
12

1
12

9
58

26
15

80
7

25
91

1
35

98
5

46
07

8
56

17
3

56
45

0
76

81
0

86
90

2

A
ut

he
nt

ic
at

io
n

10
9

28
28

30
29

29
29

28
29

28

A
ns

w
er

C
he

ck
-Q

1
12

18
31

34
32

34
33

34
33

33
34

N
ex

tQ
ue

st
io

n
5

5
12

12
12

12
11

11
11

11
11

A
ns

w
er

C
he

ck
-Q

2
13

12
33

33
34

34
33

35
36

33
34

N
o.

 o
f t

hr
ea

ds
:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

S
ta

rtQ
ui

z
12

1
13

1
49

70
14

70
3

24
31

0
34

00
2

43
90

3
53

51
2

63
35

5
73

30
4

83
10

8

A
ut

he
nt

ic
at

io
n

10
9

29
29

27
28

29
29

27
29

28

A
ns

w
er

C
he

ck
-Q

1
26

33
54

48
51

51
51

52
52

51
51

N
ex

tQ
ue

st
io

n
5

4
11

11
11

11
11

12
12

11
11

A
ns

w
er

C
he

ck
-Q

2
5

4
15

13
13

12
13

14
13

14
12

N
o.

 o
f t

hr
ea

ds
:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

S
ta

rtQ
ui

z
12

2
15

0
56

31
16

15
1

26
95

0
37

13
7

48
79

3
59

45
9

70
02

3
79

33
2

88
97

6

A
ut

he
nt

ic
at

io
n

10
10

33
30

31
32

32
32

33
33

33

A
ns

w
er

C
he

ck
-Q

1
10

8
12

7
36

8
38

1
37

6
38

2
38

6
38

9
40

8
38

4
37

9

N
ex

tQ
ue

st
io

n
5

4
11

11
12

12
11

12
37

8
12

11

A
ns

w
er

C
he

ck
-Q

2
10

9
14

2
36

3
37

2
36

8
38

0
38

0
38

3
39

7
37

8
37

5

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

 fo
r C

 q
ui

z

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

 fo
r P

yt
ho

n
qu

iz

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

 fo
r J

av
a

qu
iz

28

Table 5: Difference in response time for quizzes with and without logging

As discussed earlier in the experimental design, we used two kinds of test setups (Local

server and SEng server). We conducted identical experiments on these setups to identify if

the performance of CQG is dependent on the server configuration. Table 7 confirms our

hypothesis that performance is related to server configuration as the mean response time

is different. It was found that the mean time to start up the quiz is less in SEng server as

compared to the local server. However careful analysis confirms that after the quiz start up

performance is low in SEng server.

No. of Threads 30 100 400 700 1000

StartQuiz 115 120 18680 39211 62497

Authentication 31 31 106 104 103

AnswerCheck-Q1 26 45 121 124 124

NextQuestion 13 14 56 50 47

AnswerCheck-Q2 27 45 135 131 130

No. of Threads 30 100 400 700 1000

StartQuiz 150 180 18710 39856 63917

Authentication 36 38 120 113 119

AnswerCheck-Q1 31 51 134 126 131

NextQuestion 16 16 51 49 54

AnswerCheck-Q2 30 45 137 134 141

Mean response time (ms) with quiz logging

Mean response time(ms) without quiz logging

29

Table 6: Difference in the performance of Local and SEng server

To identify the CPU utilization of the CQG quizzes we captured the server’s CPU usage. CPU

information was captured on the SEng server while students were doing the marked quiz in

N
o.

 o
f t

hr
ea

ds
:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

St
ar

tQ
ui

z
12

1
12

9
58

26
15

80
7

25
91

1
35

98
5

46
07

8
56

17
3

56
45

0
76

81
0

86
90

2

Au
th

en
tic

at
io

n
10

9
28

28
30

29
29

29
28

29
28

An
sw

er
C

he
ck

-Q
1

12
18

31
34

32
34

33
34

33
33

34

N
ex

tQ
ue

st
io

n
5

5
12

12
12

12
11

11
11

11
11

An
sw

er
C

he
ck

-Q
2

13
12

33
33

34
34

33
35

36
33

34

N
o.

 o
f t

hr
ea

ds
:

30
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

St
ar

tQ
ui

z
11

5
12

0
41

47
86

28
18

68
0

26
46

2
30

75
3

39
21

1
48

74
3

52
52

4
62

49
7

Au
th

en
tic

at
io

n
31

31
12

4
10

6
10

6
11

0
10

7
10

4
10

3
10

2
10

3

An
sw

er
C

he
ck

-Q
1

26
45

15
0

12
1

12
1

12
5

13
0

12
4

12
2

12
0

12
4

N
ex

tQ
ue

st
io

n
13

14
52

51
56

49
47

50
47

47
47

An
sw

er
C

he
ck

-Q
2

27
45

15
0

12
9

13
5

13
4

13
3

13
1

12
7

12
5

13
0

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

 fo
r C

 q
ui

zz
es

 o
n

Lo
ca

l S
er

ve
r

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

 fo
r C

 q
ui

zz
es

 o
n

Se
ng

 S
er

ve
r

30

SEng 265. We found that CPU usage increases rapidly at the start of the quiz. Graph 2 shows

the CPU utilization on the SEng server while running quizzes for approximately 35 students.

Graph 2: CPU Utilization over time

In the end, we want to identify and reduce the high quiz start-up time. To identify that we

conducted experiments by varying the question library size. It was our hypothesis that

question library size was closely related to the high quiz start up times.

We conducted experiments with 50 threads using quizzes for C. We found that quiz start up

time is related to the size of the question library. Graph 2 shows the results from the

experiments.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

C
P

U
 U

T
IL

IZ
A

T
IO

N

TIME(SECONDS)

Quiz 3 Quiz 4

31

Graph 3: Relation between question library size and mean response time for quiz start

12 13 15 17 18 20 22 25 26 28 29

96

192

0

20

40

60

80

100

120

140

160

180

200

5 100 200 300 400 500 600 700 800 900 1000 5000 10000

M
E

A
N

 R
E

S
P

O
N

S
E

 T
IM

E
(M

S
):

Q
U

IZ
 S

T
A

R
T

QUESTION LIBRARY SIZE

32

5.0 Conclusion

We can conclude from the performance testing of CQG that:

¶ It can support up to roughly 1000 users stably. The only bottleneck of high quiz start

up time while increasing number of users can be minimized by choosing a small and

effective question library.

¶ Java questions are expensive and should be used while considering the low

performance of answer checking.

¶ Quiz logging has minimal effect on the performance of CQG.

¶ Configuration of server setup (RAM, disk) should be chosen according with

expected number of user and load.

33

6.0 Future Work

We know that the quiz start up time is high when the question library size is big. In the

future CQG quiz start up time can be reduced by identifying the cause and applying the

appropriate patch. Each patch can be measured using the test framework implemented in

this project until the caused is identified.

Furthermore, other quiz types like networking and multiple choice can be measured and

analysed as our hypothesis is that these quiz types are fast and cheap.

34

7.0 References

The sources are listed in the order in which they are cited in the report, as in the following

book and article.

[1] Apache Project : http://www.apache.org/

[2] http://www.webopedia.com/TERM/T/TCP.html

[3] https://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&redirect=no

[4] https://en.wikipedia.org/wiki/Protocol_data_unit

http://www.apache.org/
http://www.webopedia.com/TERM/T/TCP.html
https://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&redirect=no
https://en.wikipedia.org/wiki/Protocol_data_unit

