A Case Study iWeb Application Performance Measurement

by
Nitin Goyal
B.Tech Baldev Ram Mirdha Institutd ®echnology, 2011
A Master Project Report Submitted in Partallfillment
of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

a Nitin Goyal, 2015
University of Victoria

All rights reserved. This report may not be reproduced in whole or in part, by photocopy
or other means, without the permission of the author.

A Case Study In Web Application Performance Measurement

by

Nitin Goyal
B.Tech Baldev Ram Mirdha Institutd ®echnology, 2011

Supervisory Committee

Dr. Daniel Hoffman, Supervisor

(Departmentof Computer Science)

Dr. Sudhakar Ganti, Departmental Member

(Department of Computer Science)

Supervisory Committee

Dr. Daniel Hoffman, Supervisor

(Department of Computer Science)

Dr. Sudhakar Ganti, Departmental Member

(Department ofComputer Science)

Abstract

The Computational Quiz Generation (CQ¢}temis a web application that provides online
programming quizzesSCQGhas been used in CSC 1TISCL16,CSC361, SEng 265 and
SEng360in the future we want tause CGQ in largesections but de to the unavailability

of performancemetricson CQGit would berisky. We want to get quantitative performance
data. We are interested irdentifyingmaximum number of users supported stably CQG,
quiz start up time and if Java questisrare expensiveHence performance testingias
conducted onCQG using Apache JMeteéBeveral tests were conducted toollect
guantitative performance data relating tgpeed, stability and scalabilityhisproject is a
deployment of the test infrastructuren CGQ that would benefit the stakeholders in CQG
to better determine and understand problems related to the maximum number of
supported users, start up delays, expensive questiettsExperimental results have shown
that the quiz start up time is higand depends on the size of the question library. It was
also found that Java questions areich more expensive to use than C, C++ and Python

Performance testing haasouncoveed the modulsin CGQhat requiringoptimization.

Table of Contents

Y o153 = T TP PPPTR PPN i
Table Of CONTENTS....ciiiiiiii e e e e v
TaBIE OFIQUIES ...ttt e e e e e e e e Vi
ACKNOWIEAGEMENTS.....eiiiiiiiiiiiiiiiiiiiiiiesss s s e s s s e e s se e e s e eeeeeaeeeeeeaeaeeeaseeseeseseeeeessssessssess VI
0O I [11 (0o [Tox 1 o] o TP P PR PTP PPN 1
I R O @ T =3 V=1 = 1 o PP 1
1.2 Problem Stat@mMENT........cuui e 2
1.2.1 Number of users supported (Scalability and Stability)..............ccccvvveeririiiinnnn. 2
1.2.2 Expected Start up delays (SPeed).......ccccvuuiiiiiiiiiiiiiiiiiieieeeeeee e, 2
1.2.3 Question COSt by lanQUAGE.........cccccuuiiireee e 2
1.2.4 COStOf QUIZ IOQQING ..ottt eeeas 3

13 USE N large SECHOMS.ccueiiieiee ettt ettt e e e e e e e e e e e e e e e e e eneen 3
1.4 SOIULION @PPIOACK. ... 3
1.5 EXperimental rESUIIS ..o e e e e e e e aaaeaee 4
T IV YA @o] 1] 01U 11 o WP 4
1.7 Organsation Of the FEPOIT.........ouiiiiiiiiiiiie e 5
2.0 BACKGIOUNG......ouiiiiiiiiieie et e e e e 6
2.0 IMELEN ..ttt e e e e e e e e e 6
211 INEFOAUCTION. ...t e e e e e as 6
pZA% N N 01 =T To e | (o 11] o PP 6
N T - 1 0T o] L= SRR 7
0 T S 1 o = PR 4
215] 1T 1 PSSP ¢

2.2 GG e et — e e e et e e et a e b e aas 12
P2 T o I I I = TP P PP P PPTTTRRR 13
231 L] TSP PPURPPP 13

2.3.2 HTTP PersiBit CONNECHION......cueeeeee e ettt e e et e e e e e 13

F S O = P TP PPUUPPPPPPTRPPN 16
241 ThreeWay Handshake............ccooiiiiiiiiiiiiee e 16
2.4.2 PDU (Protocol Data UNit)..........coeviieeieeiiic v 16

P2 T o 1 1 Y| TP TP OPRPPPPPPP 17

3.0 EXperimental DEGN..........cooiiiiiiiiiiiiiii e 18

3.1 Dominant control variables.............cooo i 18

T =T ST (U o PP 18
3.21 LOCAI SB/EI SEIUP. ...ttt e e e e e e e e e e e 18
3.2.2 SENQ SEIVET SEUUP.....oiiiiiiiiiiiiis et e et e e e e e e e e e s 19

3.3 JIMeter Delay EXPEIMENL.........ccooi oo r e 20
3.3 1 CONSLANT TIMBE..cciiiiiieiiee et e e e et r e e e e e e e e e e e snbb e e e e eeeeaans 20
3.3.2 Uniform RANAOM TIMEL.......iiiiiiieiiiiei e 22

34 Test Run.!.S...0eSui 24

4.0 Experimental RESUIS.......cccoiiiiiiii e 25
5.0 CONCIUSION. ...eiiiiiitiii ettt e e et e e e et e e e s e b b e e e e e e anreeeeas 32
6.0 FULUIE WOK.......oeiiiiiiieiee ettt e e 33

.0 REIBIENCES ..o e e 34

Vi

Table of Figures

Figure 1 : CGQ Quiz for Linear SearCh............coooe i 1
Figure 2 : LateneBample time Diagram...........ooooiiiiiiiiiiiiieeeeesisiiiie e 8
Figure 3 : View ReSUIS iN TabIe.........ooiiiiii e 9
Figure 4: Wireshark Experiment to confirm JMeter latency & Sample time............. 11
Figure 5: Wireshark Experiment to confirm HTTP &bl [Bvay handshake)............... 15
Figure 6: TCP three way handshake..........ccccoeiieiiieeii e, 16
Figure 7 : Local server setup using crossover cable..................ovvveevviviiieniiininnnnnnnnn. 18
Figure 8: SENQG SEIVEr SEIUR......uuuiiiiiiiiiiei ittt 19
Figure 9 : Constant TimekVireshark DUMP.........oooiciiiiiiiiiiiieee e 21

Figure 10 : Uniform Random Timer: Wireshark Dump.............ccccovvviiieeeeninniiiiinne 23

vii

Acknowledgements

| would like to express my sincere gratitude to my supervisoD@niel Hoffman for the
useful comments, remarks and engagement thro
report. | would like to thank him for suggesting theject topic and for the support on the

way.

Furthermore, | would like to thank mffancée and parents who have supported me
throughout the entire process, both by keeping me harmonious and helping me putting

pieces together. | will be grateful foreverfgour love.

1.0 Introduction

1.1 CQG system

Computational Quiz Generatig@QG is an online quiz generation framework focussing on
code readingFigure 1 shows Bythonquizwhere the student entered the standard output.
The student then clickthe Check answdputton and the quiz returns €orrectmessage &

the entered value is correct.

it Input/output
print X[1][0]
print X[1][1]
X[1] =9
print Y[@]

Command line arguments

Standard input

Standard output

o=@

Correct Check answer Question 1 of 5 (1 Marks)

Figurel: CGQ Quiz in Pgon

CQG is implemented with HTMLries and PythonCQG has been used in Compuerence
(CSC 111¢CSC116 and CS61) and Software Engineering (SEng Z&5ng 360¢ourse

offerings.CGQ quizzdsave beerdeveloped for C, C++, Java arydh®n languages.

1.2 Problem statement

While CQG hadeen used in many CSC and SEng coumseshave no quantitative
performance data on CQG. In particular we are interested in finding out the performance

metrics for the following questions:
1.2.1 Numberof users supported (Scalability and Stability)

We want to identify the number of users CQG can support st&ierformance metric for
the number of users supported and the corresponding delays and CPU utilizations will help

us to better configure the hosting servers.
1.2.2 Expected Start up delays (Speed)

CQG quizesexperience delays while starting up for the first time. We are interested in
identifying and quantifying these delays. This is important to know as we want to minimize
the startup delays to make CQG quizzes load faster. We are also inteiastdehtifying

the actions tlat causes these delays in CQG.
1.2.3 Question cost by language

CQG supports programming quizzes for C, C++, Java and Python. Answer checking in CQG is
usually very fast as the code is precompiled. However we are interested ingeghether

the performance metrics are different for differedanguages We expect that Java

questions are expensive due the startup time and high memory usagef JVMas

compared to C, C++ or Python.
1.2.4 Cost ofquiz logging

For each user in CQG an Xl file is generated. These log files captures users actions for
answer submission or moving to a next question. For each action performed by the user a
write operation is triggered on the XML file. We are interested in identifying if this approach

of logging actions is expensive or not.
1.3 Use in large sections
The above mentioned problems are important as we want to use CGQ in larger sections. To

do sowe needmore information about CQG behaviour under load.

With the knowledge of these performance metritsvould be helpful to better estimate
the load on the server. This information can be advantageouma&e better decisions
about server configuration. Performance testing will also identify the places of

improvement in CGQ gbat it can be optimizedh the future.

1.4 Solution approach

To better understand and measure CQG performance we tested it Apiache JMeter
The types of performance testing we conducted are:

1. Load testingthecks the application’s ability

loads.

2. Stress testinginvolves testing the application under extreme workloads to identify

the breaking point of the application.
1.5 Experimentatesults

The esults from the performance testsave provided us quantitatve datarelating to
number of users minimunmymaximum Response timesize ofHTTP GET/Repand CPU

utilization.

1.6 My Contribution

| conducted Performance testing of CQG using Apache JMeter to analyse its scalability and

load endurance capacityhe contributions are:

1 Evaluation of CGQast-up lagtime

1 Determinationof the maximumnumber of users CQG could support stably
1 Identification of which questions are expensive

1 Measurement ofjuiz logging ast

1 Determinationof the effect of question librarysize on quiz start up time

JMeter components arapplied and understood by doirafew initial experiments and then
later mapped to CQG accordinglyhe primary focts while creating the test runs wao
identify the answers for the problems discussed in the previous section. After conducting
the measurenents and analysis we werable to provide quantitative data on the

performance characteristics of CQG.

1.7 Organisation of the report

In Chapter 2Apache JMeteand CQGareintroduced with the definition of components and
concepts used ithe experiments.riformation for HTTRTCPand HTMLis alsopresented
to form the background for networking conceptShapter 3describes the experimental
design usedin the performance measurement andresents theinitial experiments
conduded to understand JMeter featuse Chapter 4presents the experiment results
Chapter Sprovides theconclusionfrom the analysis of the experiment resuéied Chapter

6 presents the Future work.

2.0 Background
2.1 JMeter

2.1.1 Introduction

ApacheJMeteris anApacheproject[1] that providesa load testing tool for analyzing and
measuring the performance of a variety of services, with a focus on web applications.
JMetercan be usedo generate a variety of loads @nserver by generating HTTP requests
that hit the specified semr. JMeter supports variablegparameterization assertons
(response validation)per Thread cookiesconfiguration vaables and a variety of report

generation features.

A test plan can describes the ssthat JMeter will execute when ru\ complete tesplan

can have one or more thread groups, logic controllers, listeners and timers.
2.1.2 Thread group

A thread groupconsists of controllers and samplers underTihere are certain controls

defined in a thread groupre:

1 Number of threadslt can be considereds the number of users.
1 Rampup period The time taken by the JMeter to start the total number of threads.
For examplejf there are10 threads,and the ramp upperiodis 9 secondsthen

each thread will start 5=50/18econds after the previous threadé begun.

2.1.3 Sampler

The Sampler tells the JMeter to send the request to a specified server and waitafor
response. W are using HTTP Requsampler which allows)Meter to send an HTTP/HTTPS

request.
2.1.4 Timer

Timerare used tointroduce delay before each samplatithout atimer, JMeter might
overwhelm the server by making too many requests in a very short amount of\ifeere

usingConstantTimerand Uniform Random Timdor our experiments.
2.1.5 Listene

The Listenerprovides access to the information that JMeter has collecbdut the test
casewhile JMeter runsWe are usingiew Results in Tabéaxd Summary Bportlistener for

our experiments

2.1.5.1 View Resulin Table

The concept of latency and sample time can beatithted by a timingliagram as shown in

Figure 1

Client Web

i
|
|

F & TCP SYN] i

| [TCP SY i
|

TTP GET i

|

|

|

|

|

\

| |

l l

! HTTP Segmen .
_Y : I

: |

|

|

|

|

|

|

|

|

|

|

|

Latency

Sample |

Time

|

v LAST HTTP Segment

Figure2 : LatencySample time Diagram
The olumns containedn Resulttable as shown in Figurecan be defined as:

1 Sample timeThe time from invoking the request to the laByte of the response
coming back.

i Bytes The size of the data in the sample response returned from the server.

1 Latency TimeThe time from invoking the request to tHest packet of the response
coming back.

1 Connection TimeThe time taken to establish #h connection with including SSL

handshake.

The columnsSample #, Start Time, Thread Name, Label and Status anesadtin this

report.

=1 —I<<<
15 =
@ =
= =
= —
‘== =
=3 2
< =
=
< | 1}
- e I L I L
— — —
= pay
= =
g s
o e |
3
= e e
S =S |=FE
= || —s|—s
=
= 8
=] ="
=
=2
b=
—
—=a
|
|
E[
S | «
«x3 =1
| & | <a-<a-a-a
&
i il sl bl
= | =" e
=
| =
=
=
=
=
=
54
ws
—
= s
A3] .
Ly 3
- —| |
. 1 =
et I Bt B=
e —1 [— s
S| S5 S
n o=
€| | <) <
et B e e e
= =1 =1 =1 =
s | —=|l=|=|=
. - Pu= P, DeE e
= = =1 = =
wm | @) @) o @
sS|=E2)j=21=21=
- =
= = E|E[E|E
s Pt = =
-— @l ===
ju— =l |l | o
- ar ~ oo | e | o>
= -5 = =S |EE
= o = @ 3 > > 2
— . = E |l SBl=lsls
L — = — 5 Bt B ¥ ¥4
= o = c-:--:r'-,-’-z-’
= = = s === =
@” z — L e I I
= o == 1 1 1
723 - o a] ==
@ x| = = @ -
= =g £ =
= < = — @
= = El| = = =
) = =3 = = =
< - = = S
= = o = el

Figure3: View Results in Table

To confirm the correctnessf @esults asshown in Figure 2Ne created a simple CQG quiz
containing two questionsThe Submit and next question aemulated usingthe HTTP

request sampler. Verification dhe columns of Viewresult Tableelated to htencyand

10

sample time is doneavith the help of apacket sniffingool calledWireshark as shown in

Figure3.

As seen in Figure 2, Sample 1 indicates the Sample time, Latency as 112 ms which can be

confirmed from the Wireshark experiment as shown in Figure 3 with packet number 8.

It indicates the time as approximatelyt1 msexcluding the 1 ms connection time that can
add up to 112 mgsin our case Latency and Sample time is the same as only one HTTP
segment gets returns from the server. Bytes represents the size of the response for the

request from the server. Connectidime is 1 ms as the connection was very fast.

11

(134/3%33) 0 992 T'T/dLLH B9ET
[NGd parquasseas @ 4o Juaubas g)L] p1sT
(Nad parquasseas e 4o Juaubas d)L] €9
9TBLO76ER=13351 GLPERG=12ASL 6= PTTE=UTM LLE=XOY ZETE=Dag [YO¥] Z9Lk§ < 11e-d13y 99
T'1/dLIH 6=UbJJn3RIamSURHYIAY)=INGRP) JON+0 | 3Y=1n0pZ%: 2TND/BD/ 139 09E
ELbERG=13351 STRLOTSED=18ASL B=U9T 96AOE=UTH ZETE=YOY £pT=DAS [YD¥] 11e-d11y < 794G 99
ELPERG=123S1 STSLOTSEN=12ASL B=U9 BBZEE=UTN 9¥BT=Xo¥ EpT=DaS [D¥] 31e-d33y < 794G 99
ELPEBG=133S1 GTBLITSED=]1ASL B=Ua OEEOE=UTH BBE=YOV EpT=DaS [D¥] 31e-d33y < 794G 99
(1W34/3%33) N0 06T T"T/dLLH TSET
[Nad parquasseas @ Jo Juaubas d)L] p1sT
(Nad pajquasseal e 4o Juaubas d)L] €9
BBLLOTSE=12351 OPPEAG=12ASL B=U3T BRORE=UTH ERT=YOY T=35 [YO¥] Z0LpS < 11e-d114 99
T'T/dLLH T PLJON 0113y/TT1=23ds;zTnb/6bd/ 130 87
ObbERS=U33S1 [BLLOTSER=10ASL B=U3T ZIE6Z=UT T=XOY T=b3g [¥D¥] 11e-d13y < Z9LkS 99

dl
dl
dl

dl
dll
d)l

dl
dl
dl

d)l

ojur j3bus1 (003044

1000l
rereor
1o'eor
1°0°0°01
1'0°0°01
1'0'eor
£'0'0°0r
'0'0°01
1°0°0°0T
1°0°0°01
1eteor
107001
reteor
'0'0°01

UOTIeUT2SAQ

£°0°0°01 000LS79¢1°0 91
1°0°0°01 000L619CT°0 ST
£°0°0°01 0000L19CT"0 #1
1°0°0°01 600909110 €T
1°0°0°01 0602569110 ZT
1°0°0°01 60098LTTT'0 TT
1°0°0°01 600v99TTT"0 61
1°0°0°0T 60609TTT"0 6
('0°0°0T QBAECSITI'0 8
1°0°0°01 0009PTTT 0 L
1°0°0°01 6000PPITI"0 9
2°0°0°01 600E99060°0 §
1°0°0°0T 600059060°0 ¥
1°0°0°01 006451600°0 €

22405 |

"ON

Figure4: Wireshark Experiment to confirdMeterlatency & Sample time

12

2.1.5.2 Summary Report

The Summary reportontainsa row for each differently named request in the teShe
Summary reporprovidesinformation about the minimummaximum response time and

throughput.

1 Average The meanresponse time in milliseconds faparticularHTTP request.
1 Min: Minimum response time taken by the request
1 Max: Maximum response time takerylihe request

1 Throughput The number of requestper unit of time that are sent to the server

under test.

We are particularly focused on identifying th€T TP requestfor which the Maximum
response timasgreater than 5 seconds. These requests will provide information about the

CQG load time.

2.2 CQG

CQG offers quizzes in practice and marked mode. In Practice mode, there is no User
authentication and quiz logging. Quizzes under marked mode are authenticated by the login
credentials provided to the students at the beginning of the term. Marked quizees a
logged on the server for each action performed by the students on the client. Quiz logs are

then used for marks calculation.

13

In terms of CQG, we define the JMeteariables which are used to perform different

experiments on the server with varying loadd number of users.

1 Number of threadsNumber of students/users attempting the quiz
1 Rampup Period Time taken from quiz start to see the first question.

1 Timer Delay between eacpair of submit actions.
2.3 HTTP

Hypertext Transfer Protocad anunderlying protocol used by World Wide Welt defines
how messages are formatted and transmitted over the interrietalso formulates the
specification of the actions that web servers and browsers should take in response to

various commands.

23.1 GET

Prominent request methods in HTTé&e GETPOSBndPUT CQG usesnly GET method to
interact with the server Thiscan be confirmed by packet no. 4 of FigdreA request
containingthe GETmethod hasname/value pairs in the URkhich requests data from a

specified resource.
2.3.2 HTTP Persistent connection

Persistent connectioor HTTP Keegliveis the idea of using a singl€€Rconnection to send
and receivemultiple HTTP request/respons€QG use#HTTP 1.1 under which all the
comections are considered persistent unless declared otherwiddeter has the

functionality to define HTTP requests withe Keepalive tag that is responsible for

14

persistent connectioa HTTP 1.behaviourcan be confirmed from packet 4 of FiguteA
TCPconnection isestablishedonly oncein the beginning of the quiz as showngacket 1

and 2 This connectiofs thenusedby the subsequent HTTP requestspacket 12 and 16.

15

['T/dLIH T=ubaan2zzTnb/0bd/ 139 49z
LLhE0G=1235 L BTBLOTSEP=12ASL B=URT OGRTH=UTN LL6V=XO¥ LLE=D3S [YD¥] 31e-d33y < Z9LbS 99
(1034/3%33) Y0 067 T"T/dLLH B9ET
(NGd pa1quasseas @ 4o Juaubds gy] 1St
(NGd payquasseas e 4o Juubas d)L] £9p
OTBLOTSEP=1935L SLPEAG=12ASL B=UaT PATTE=UTM LLE=YOY ZETE=DAS [¥D¥] Z9LbS < 11e-d11y 99
T'T/dLLH =UbJIN2PJaNsUR+}Ia)=1nqp1J0M+01 | 3y=1n0pZ%2TND/6bD/ 139 00E
ELbERS=1331 GIBLOTSER=12ASL B=U3] OGAOE=UTM ZETE=XOY EbT=3S [M¥] 11e-41y < Z9LbS 99
ELYEAS=135L GTBLOTSEN=12ASL B=U] BBZEE=UTM OYBT=X2Y EpT=D35 [Y)¥] 31e-033y < 291G 99
£LEAS=J235) STBLOTSEN=18ASL B=U9 OFEBE=UTH BGE=XOY EpT=DaS [YDV] ¥1e-d13y < Z9LvS 99

(1W34/3%33) Y0 802 T'T/dLLH ZSET
(NGd pa1quasseas e Jo Juaubas g)L] bIsT
(NGd payquasseas e 4o Juaubas d)1] €9
BBLLIZGEP=12351 ObbEAG=12ASL B=U3T BBOBE=UTH EPT=XOY 1=bas [¥D¥] ZOLbS < 11e-d31y 99
T'T/dLIH T PLIOA 01124/1TT=Dads;zTnb/6bd/ 139 892
ObbEAS=12351 [8LL9ZGEP=18ASL B=U3T ZIEGZ=UTH T=YOY T=D35 [¥v] 11e-d13y < ZocbS 99

dll

dl
dil
dl

dl
dl
d)l

dl
dl
dl

dl

0'0°0°01
(AN
oot
10°0"0r
1'0°0°01
16°0°01
1'0°0°0r
1'0°0°0r
0001
1'0°0°01
1°0°0"01
1°0°0°01
10°0°01
o0
1'0°0°01
1'0°0°01

ojur jabua] 10203044 UOTIRUTISEQ

1°0°0°01 000E6Z0ET "0 81
1°0°6°0T 00666€971°0 LT
{"0°0°01 00057910 91
{"0°0°01 000L619C1°0 ST
°0°0°01 0600L19CT°0 #1
{°0°0°01 0001909110 €T
1°0°0°0T 0062509TT"0 TT
1°6°0°0T 06698LTTT 0 TI
1°0°0°01 006¥99TT1"0 6T
1°0°0°0T 606¥09TTT"0 6
£'0°0"01 BORECSITI'G 8
°0°0°01 000¥IPTTT"0 L
°0°0°01 0000¥PIII"0 9
{"0°0°01 000£99060°0 S
1°0°0°0T 000059060°0 ¥
1°0°0°0T 606bST660°0 €

224005

an

"N

t toonfirm HTTP and CR(3-way handshake)

imen

Wireshark Exper

Figureb

16

24 TCP

TCPenables two hosts to establish a connection and exchange streams of Usitag
Wireshark we confirmed that single TCP connectiorusedto handle multiplequiz submit

preses as shown ifrigure 4.

2.4.1 ThreeWay Handshake

A three-step methodis used in a TCP/IP metrk to create a connection. This connection
requires both client and server to exchan@'Nand ACKpackets before actual data
communication beginsThe Threevay handshake is shown igure 5 and confirmed from

packes1, 2 and 3 of Figure 4.

Client Server
S¥n
SYN-RCK
ACK

Figure6: TCP three way handshake
2.4.2 PDU(Protocol Data Unit)

PDUis the information delivered as a unit among peer entities of network and that may

contain control information, such as address imi@tion or user data [4].

17

2.5 HTM.

HTMLor Hyper Text Markip languagen CQG isery lightweight and does not contain any
images or JavaScrigdTML forms are used with no client side embedded code and are
generated on the server side usingb2py.Each HTMpage in CQG contains textboxes for
entering the expected input or output aralittons for submitting/checking the answers and

switching between questions.

18
3.0 Experimental Design

3.1 Dominant control variables

The control variables that are usedtire experiments to vary the load are:

1 Rampup
T Timer
9 Number of threads

1 Quiz Corgnt: Quizzes containing Bython and Java questions.
3.2 Test Setup
Performance tests are rumith two different setups:
3.2.1 Local server sefu

In this setuppne machineAsig is thetest serveron which CQG is running over port 808
Asia is connected by a cresser cable to another machindn@ia) on which JMeter is

running to generate traffid-igure 6 shows the Local server setup.

India Asia
CROSSOVER CABLE
IMeter Driver CQG Server
10.0.0.1 10.0.0.2

Figure7 : Lo@l server stup using crossover cable

19

Configuration omachinesn local setup ishown in Table .1

Machinename India Asia

Processor Intel i7-2600 @3.40 GHz | Intel Core 2 Duo @2.33 G}
RAM 4GB 2GB

Operating System Ubuntu 14.04 Ubuntu 14.04

CPU Core 8 2

Tablel: Local Server Setup
3.2.2 SEngserver setup
In this setup, avirtual server €qg.seng.uvic.dais deployed usin@roxmox Proxmoxis a
server virtualization management solutiofhis server ipublically accessible amdns CQG
on port 8081. Machinelndiais running JMeter which targets the virtual serveigure 7

shows the Bng server setup.

India SEng Server
////'\\' Iﬁ
Internet |
1|
1l
JMeter Driver cqgg.seng.uvic.ca
10.0.0.1

Figure8: SEng Server Setup

Configuration of the server is shownTable 2.

20

Server Name cqg.seng.uvic.ca
Processor KVM 64 bit

RAM Variable (512 MB-1 GB)
Operating System Scientific Linux 6.7
CPU Core 1 core

Table2: SEng Server Configuration

3.3 JMeter Delay Experiment
To measurethe JMeterdelay accuracy we conducted severakperiments. We tested
Constant Timeand Uniform Random Timersing Wireshark

3.3.1 Constant Timer
Constant timelintroduces a fixed delay between consecutive requests of the same thread.
This is usefulvhenwe want to have each thread pause for the saamsount of time The

configuraion used for thisexperiment is:
1 HTTP Sampler3 identical requests tthe CQG static age
1 Number of Threadsl

1 Thread Delay (ms)1, 10, 100, 1000

We ran several tests usindifferent Thread delays and measdrthe delay accuracy using
Wireshark We found the Constant Timacccurate A Wireshark dumpadir a thread delay of
100 msin Constant timeis shown in Figure.&ET requests from Packet no. 4, 10, 15 and

20 shows thedelay of 100 ms.

21

(WY X0 07 T'T/LIA KL LM
[n0g oyguasseal @ Jo Waabas ¢)1] 1op dl
T'U/ALIK xopat/aynesap/Beo/ 130 b6T oLl
CIBTIOG8T=J35L TSSGRRGBL=1BASL =R ZULSE=UTA EOZI=X0Y SBE=bas [YON] M1e-dhy < 069gh 99 dl
TIRTIBGAT=123S1 ZGGBARSHT=IASL =L 0SHE=UTH SOBT=H0Y CRE=BaS [Y0W] 18-y < 06aeh 99)l
(/3 0000 T'U/dL KTy oLl
[10g paquasseas @ Jo Jaubas ¢)1] 79 dl
U/dLLW opur/yegap B0/ 39961 oLl
GRLLIOGAT=23S1 QTSBARSET=IRASL <L QESEE=UTH GAST=HOY GZ=b8S. [Y0W] 18- < 96apb 99)l
CRLITGG9T=123S1 GTSBARSAT=IRASL =R ITE=UTN TSTE=HOY (SZ=baS [Y0H] ¥1e-0h < 9608 99 dl
(/3 0007 TT/dL KTy oLl
[n0g poguasseal @ Jo Waubas ¢)1] 1gp dl

T /dLLH Yapur/3ynegap/Sbo/ 130 1
6SL110691=1295L. GAG6AS6T=12ASL =0 AOETE=UTH SSL=10Y 671=baS. [Y0H] ¥1e-hay < 9608 99 dl
GGLTT0BOT=12951. GAGBBS6T=1BASL 0=Ua OEEAE=UTH L6E=10Y 61=baS [Y0N] 11e-0 < 06eh 99 fl
(/30 0000 TU/dL BTy oLl
[ndg paquessead @ Jo Jaubas ¢)1] 2gp)l
B6/63RS61=J09S1 GSLTIOGAT=ILASL =0 OBBAE=UTH GLL=K0Y T=DoS [Y0K] 9698 < Mie-ay 99 dl
T'T/dLLY Xapur/ynejap/Bho/ 130461 Ll
BSLTT0681=10351. 66h608S61=2ASL B=4a1 ZIEBL=UTA T=40¥ 1=035 (] J1e-dA4 < 9608p 99 dl

or buay |0r030sg

1'9°0°01
1900l
voee
coool
voeer
1°9°0°01
roeer
cooo
Coeot
voeen
rooor
1ge'el
U000l
voee
voeer
1°9°0°01
1°0°0°01
rooer
voeer
Coool

WoTRuTISa(

vooer
Coool
oo
10000
e
o0l
voeer
10000
ool
rooer
vooo
coeer
1'0°0°0
roeer
rooer
Co0e
000l
voeen
e
1°0°0°01

20005

B0OESNAIE"d 10
BaeropeIE 8 I¢
800084LE "0 67
0008SCIC 0 61
00TSTaIe 0 81
000THITIT S Ll
000TB8CTZ"8 91
daecaLenz’d Sl
000Lb1LOT'8 1
Q00THTLOT"0 €1
0008G1L0T"0 {1
006L68L61°0 11
0485685810 B1
000BEC00°6 6
800627206°0 8
0009ST200°6 L
006766796°6 9
§096£009°0 S
000bLE000°0 b
AOTET000°6 €

|

0

hark Dump

Ires

ConstantTimer- Wi

Figure9

22

3.3.2 Uniform Random Timer

This timer pauses each thread request for a random amount of tilnevill delay
consecutive requests of the same thread by a random interval within lower and upper

bounds. Uniform Random Timer consists of two components:

1 Random Delay maximum (m$jaximum random number of milliseconds to pause.
1 Constant Delay Offset (lmdNumber of milliseconds to pause in addition to the

random delay.

Total delay is the sum of the Random value and constant offset value.

Example: IConstantdelayoffsetis 1000 ms andRandom Delay maximuim 200 ms than

all threads will be delayed betvea 1000 ms and 1200 ms.

The configuration used for this experiment is:

1 HTTP SampleB identical requests tthe CQGtatic Page
9 Number of Threadsl

1 ConstantDelay OffsgRandom Delay Maximum (ms})000/1, 1000/10, 1000/100

We ran several experiments using the defined configuration and found Uniform Random
Timer to be very accurate and random. A Wireshark dump for the experimenQoitstant
Delay OffsgRandom Delay Maximuraf 1000/10 msis shown in Figure.GET requests

from Packet no. 410, 15 aad 20 shows random delay of 1059, 1029 and 1022 ms

23

BTBTETGAT=1235 bEATACAT=1EASL 8= OEGRE=UTH TLLE=YY THO=Da5 [YDH] 11e-d124 < T1L8b 99
BTBTETGAT=1235 bEATACAT=1EASL B=Ua ZI6BE=UTH ETyE=YY Th=Da [YDy] 11e-d124 < T1L8b 99
(1U34/1%33) Y0 08C T'T/dLLK 42

[0 paquasseal e [0 JusuBas 4))] 19

T"T/dLIN %aput/1\neyap/B00/ 139 46T

SEGTETGRT=1295L GLTGT6CHT=12AS1 B=UaT B8BLE=UTH LTBE=XDY £16=bas [yv] 11e-d1ly < T1Leh 99
SEGTETGRT=1295L GLTGT6CHT=12AS1 B=UaT OELOE=UTH KSOT=XY £1G=bas [Yv] 11e-d11y < T1Leh 99
(1034/1481) Y0 082 T'T/dLLH #2b

[0 paquasseal e Jo Jusubas 41| 19

T T/dLIK %aput/1yneyap/Bho/ 139 461

BBTTETART=1235L Y7GTAS6T=1ASL G=U0 TILSE=UTH E9ZC=XY SaE=bas [1e-dhiy < T1Ldr 99
BBTTETART=1235L Y7GTAS6T=12ASL G=U0 OSHE=UTH SAGT=YY SaE=bas [Ov] 1e-dh1y < T1Ldr 99
(1u34/1%33) Y0 08C T'T/dLLK 42

[nad poguesseal e Jo Juubes 41 1o

T'T/dLLK Xoput/1\nej2p/6ba/ 139 461

EZ0TET60T=1285 . 90LT6AET=18ASL B=U31 OESEE=UTH 6AST=Y0Y LGe=bas [¥v] ¥1e-dny < T1Lop 99
EZ0TET60T=1285 . 90LBT6ABT=18ASL B=U31 ZTGZE=UTH TSTI=40Y LGe=bas [¥v] ¥1e-dny < 110 99
(134/1%33) Y0 082 T'T/dLLH ¥

[nag pajquasseal @ 4o Juauas 4] 79

T'1/dLLK ¥eput/3\neyap/Bb/ 139 61

BSLOETART=I03] TASALAGAT=12ASL G=Ue QOETE=UTH SSL=40Y G21=bes [YDK] 1\e-01y < T1Leh 99
BSLOETART=I03) TAAZEGAT=12ASL G=Ue OEEBE=UTH LGE=YOY G21=Das [YDK] 11e-01y < T1Leh 99
(134/1%33) Y0 082 T'T/dLLH ¥

[nag parquasseal @ 4o Juuas 4] 70

TSHT666T=1236L. [GLBET6AT=\eASL B=U31 BRBBE=UTH GZT=X0Y T=bag [YD¥] T1L0p < 11e-dy o9
T'1/dLLK aput/y\neap/6b/ 130 p61

LSLOETAAT=1235] TASHT6CHT=12ASL =037 ZTEGZ=UTH T=Y0y T=baS [¥ov] 11e-dy < 11L0p 99

dll
dll
dLI
dll
dL
dll
dll
dLI
dll
dLI
dll
dll
dLI
dll
dLI
dll
dll
dLI
dll
dLI
dll
dll
dLI
dll
dll

dll

our Jibuay (oa0104g

Ut
U
oot
10°0°1
Uoe
oo
Uooe
oo
100t
oot
oot
oot
oot
107071
oot
oot
oo
oot
10071
oot
oot
oot
oot
1007t
10°0°01
Ut
oot

U0T3eUT)Sag

1°0°0°1
1°0°0°1
U
NN
RN
10°0°r
1°0°0°01
reo
reo
e
1e°0°er
1e°0°er
e
AN
e
1e°0°er
1eeer
e
oo
e
1eeer
1eeer
AN
AN
NN
1ot
1°0°0°01

32n0§

0BOLTZZIL' B
00090221 82
060660212 ¥ LT
0eeTeBzIz "y 9
BearzzeTe v 5
000FL6ETT"E ¥
0BOE9BETI "€ €
GROTIBETT E T
00evBLETT"E T2
0000L6TTT € BT
00OTOBTHH"T 61
00068LT60"T 81
060789T60°T L1
000ST9T68°Z 91
06079680°C ST
000S95798°T 1
0BOESSZ98°T T
BeRERFT90° T 21
000SLEZ90'T T
060978650°T A1
00066vZ00°0 &

000685200°0 8

G60T6EZ0A"0 L

000LTEZ00"0 9

000<ASA00" &

0BRERGA"A ¥

000v51000° €

A

o)

hark Dump

Ires

w

imer

Uniform Random T

Figurel0

24
34 ¢Said wdzyQa RSaA3dy
Each test run contains one thread group. Each thread group wilacowhe thread per
student. We divide the quiz into N chunks, where one chunk represents an HTTP request

that hits the specified server. We are using same questions, assaed order and inter

submit delay in each thread group.

We conductedseveralexpetiments onthe local and SEnserver. Experiments orthe local
and SEng server are identical in the configuratloreach experiment we changed either
the number of threads or the quiz languad€, Python and Java). The constant and varying

parameters irthe tests are:
1. Constant parameters
Rampup time: 30 seconds
Constant Timer: 100 ms
Numberof questions in thequiz: 2

2. Varying parameters
Numberof Threads: 30100-190(difference of 10)20061000(difference of 100)
Language: C, Python and Java
QuizAuthentication: True or False

Quiz Logging: True or False

25

4.0 Experimental Results

In this section, we preserhe results thatwill enable ugo answerthe questions that are

introduced in the Introduction

Table 3shows the results analgd from running &periments ondcal servefor C language

CQG quiz

GYT | TOT | Q0T | OTT | 9T | 61T | 68 | U0 | 08 | 60 | €2 ZD-¥osydiamsuy
oL | 65 | 9 | S9 | 09 |67 | 67 | 29 | 8 | G | L |uonsanOmaN
JST | OTT | TOT | TUT [€21 | ST | €8 | Q0T | 8 | L& | YT TPIpSyQiemsuy
€T | L6 | Lc0 | 010 | 80 | €6 | T6 | 9% | ¥6 | 9T | G |uoHednuayiny
OBLTLT |/SBTST [8YTTTT (86L0TT | OT806 | 6YSOL | 8TVOS | Seh0E | VL90T | €vz | €67 | ZinQueis
000T | 006 | 008 | OOL | 009 | QOS | QOF | 00E | 00C | 00T | OF |-SPeaiupjoON
(Sw)awn asuodsay wnuwixe
o T A A 4 A A O A4 A A A A O A /o = T S
4 14 14 4 4 14 4 14 14 4 G | uonsandixaN
o 1 AN A A O A 1 A4 A A O A O A 0 = T S
8 8 8) 1 A) A I A IR 6 6 | uomedRusLiny
8T | TIVT | TSHT | 6GET | €SKT | T8CT | 8OTT | 098 | 685 | 2T | 81T | ZnQueIS
000T | 006 | 008 | OOL | 009 | Q0G | QOF | 00 | 00C | 00T | OF |-SpeaiupjoON
(Sw)auun asuodsay wnwiLIy
oL | % | S| |’ |’ | €| & | T | e DIsuemsy
Wi 1m0 a|da|d|d § G | UonsanQixaN
oL e | e || || & |’ || 8T | 2 TDAsydIemSUy
8 |60 | 8 |6 |6 |6 | 0 | 8 | 8 | 6 | O [uomepusny
20698 | 0T89L | 095 | €LT9G | 8L09F | 5869 | 11657 |L08GT | 9285 | 62T | 12T | ZInQueIs
000T | 006 | 008 | OOL | 009 | QOS | QOF | 0OE | 00C | 00T | OF |-SPeaipjoON
(Sw)awn asuodsay Uea

Table3: Meanresponse timdn Local server using Qigzes

26

As can ben be seen from Table 3, Meassponse time increases rapidly from 100 threads
to 200 threadsTo narrow down the specific numbef thread at whichthe response time
is increased rapidly &conducted experiments with threads in th@ngeof 110190 with
differenceof 10 as shown in Graph We foundthat at 170 threals the meanresponse

time increases rapidly

5000
4535
4500
4000
3500
3000
2500
2000
1500

1000

MEAN RESPONSE TIME (MS): QUIZ START

500 141 142 146 139 143

110 120 130 140 150 160 170 180 150
NUMBER OF THREADS

Graphl: Increase in mean response time at Quiz Start170 threads.

We conducted experiments using different languages for the GQtzes C,Pythonand
Java). Tabld shows the difference in the response time for these languages. It was found
that the answer checking Bxpensive in Java quizzas compared to C and Pyth. The
difference between mean respong times can be seen from theows with label

AnswerCheck1land AnswerChecklin section 1, 2 and.3

27

G/E | 8/ | L6 | €8 | 08€ | 08C | 89€ | ¢ | €92 | Z¥T | 60T ZD-Hosydiemsuy
17 [4) 8.€ [4) 17 [4) 45 17 17 14 G uonsanQixaN
6/ | ¥8€ | 807 | 68 | 98€ | 78€ | 9/€ | T8 | 895 | LZT | 80T IP-Hosydiemsuy
ee ee ee 149 149 149 T¢ 0¢ ee 01 0T | uoneanuayiny
9/688 | ¢E€86. | €200 | 6G¥6S | €6/8v | LETLE | 0969 | TGTIT | T€9S | OST | <1 zZinQuels
000T | 006 | 008 | 0OL | 009 | 0OS | OOF | OO | 0OC | OOT 0 |'Spesiy} jo 'ON
zinb eAe(10} (Sw)awi asuodsal Ueay
[4) 14" €T 14" €T [4) €T) qr 14 G ZD-Msydiamsuy
17 17 [4) [4) 17 17 17 17 17 14 G uonsanQixaN
19 19 S S 19 19 19 1% 4] €e 9¢ TD-Y8yDIamsuy
8¢ 6¢ LC 6¢ 6¢ 8¢ LC 6¢ 6¢ 6 0T | uonednusyiny
80TE8 | ¥0SEL | GGEE9 | ZTGES | S06EY | 200VE | OTEVC | SOLYT | OL6v | TET | TdT zZinQuels
000T | 006 | 008 | 0OL | 009 | 0OS | OOF | OO | 0OC | OOT 0 |'Spesiy} jo ON
zinb uoylAd Joj (S)awn asuodsal ueapy
e ge 9¢ Ge ge e e ge €e 14} €T ZD-Mosydiamsuy
17 17 17 17 17 [4) (l [4) 45 G g uonsanQixaN
e ge ge e ge e 149 e T¢ 8T 2T TP-osyDlamsuy
8z 6¢ 8z 6¢ 6¢ 6¢ 0¢ 8z 8¢ 6 0T | uoneanuayiny
20698 | 0T89L | 0G¥9S | €LT9S | 8L09F | G86SE | TT6GC | L0SST | 928 | 621 | TcT zinOuels
000T | 006 | 008 | 0OL | 009 | 0OS | OOF | OO | 00C | OOT 0 |'Spesiy} jo 'ON

zinb 9 1o} (Sw)awn asuodsal ues|y

Table4: Difference betweermeanresponse time for C, Python and Jay#zzeson Local

server.

To check if quiz logging has any effect on performance we conducted experiments using C

language quizzes on SEng server. Table 6 shows the results with quiz logging and without it.

28

Mean response time(msyithout quiz logging

No. of Threads| 30 100 400 700 1000

StartQuiz 115 120 18680 | 39211 | 62497
Authentication 31 31 106 104 103
AnswerCheck-Q1 26 45 121 124 124
NextQuestion 13 14 56 50 47
AnswerCheck-Q2 27 45 135 131 130

Mean response time (msyith quiz logging
No. of Threads| 30 100 400 700 1000
StartQuiz 150 180 18710 | 39856 | 63917
Authentication 36 38 120 113 119
AnswerCheck-Q1 31 51 134 126 131
NextQuestion 16 16 51 49 54
AnswerCheck-Q2 30 45 137 134 141

Tableb: Differencein response time for quizzes widmd without logging

As discussed earlier in the experimental design,used two kindsof test setups (Local
server and SEng server). We conducted identical experiments on these setups to identify if
the performance of QG is dependent on the server configuration. Table 7 confirms our
hypothesis that performance is related to server configuration asnleanresponse time

is different.It was found that themeantime to start up the quiz is less in SEng server as
comparedto the local server. However careful analysisfirms that after the quiz start up

performance is lown SEng server.

29

0ET Gcl LCT T€1 eel Vel Gel 6¢T 097 o 12 P-Yaydiamsuy
Ly Ly Ly 09 Ly o 99 18 s 14} €T | uonsanQixaN
¥el | OCT | ¢¢T | ¥el | OET | QT | TeT | Tel | 0T | S 9z TD-M0aydiemsuy
€0T | 20T | €0T | ¥OT | 0T | OTT | 90T | 90T | #cT T¢ T€ | uoneanuayiny
L6¥9 | ¥29CS | EvL8Y | TTC6E | €9L0€ | C9¥9C | 0898T | 8298 | L¥Iv | 0CT | GTT ZInQuels

000T | 006 | 008 | 00L | 009 | 00OS | OOF | QOE | 00C | 00T | O |:SPeaiyjo ON

18IS Buas uo $azzinb 9 Joj (Sw)awin asuodsal uea|y

e ee 9 e ee e 13 ee ee 4} €T ZD-Yo8YDIamsuy
1 17 1 17 117 (l (l (l (l g G | uonsanQixaN
e ee ee e ee e 143 e T¢ 81 AR R REITOIEIISIN
8¢ 6¢ 8¢ 6¢ 6¢ 6¢ 0¢ 8¢ 8¢ 6 0T | uoirednuayiny
20698 | 0T89L | 0G¥9S | €LT9S |8L09% | G86SE | TI6GC | LOSST | 928G | 6T | TCT ZInQueIS

000T | 006 | 008 | 0OL | 009 | 00S | OOF | QOS | 0OC | OOT | O |:SPeaiysjo ON

J19AIBS 8907 U $3zzInb 9 Joj (SW)auwi ssuodsal uea|y

Table6: Difference in the performance of Local and SEng server

ser

t he

captured

we

To identify the CPU utilization ofthe CQ@G1 i z z e s

information was captured othe SEng server while students welang the marked quiz in

30

SEng 265. We found that CP&age increassrapidly at the start of the quiz. Graph 2 shows

the CPU utilizatio onthe SEng server while runnimmizzes foapproximately35 students.

40

35 Quiz 3 Quiz 4
30
25
20

15

CPU UTILIZATION

10

ol

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
TIME(SECONDS)

Graph2: CPU Utilization over time

In the end, we want to identify aneducethe high quiz starup time. D identify that we
conducted experiments by varying tlggiestion library size. It was our hypothesis that

question library sizevas closelyelated to the high quiz start up tinse

We conducted experiments withO threads using quizesfor C We found that quiz start up
time is related to the size of the quisn library. Graph 2shows the results from the

experiments.

200
180
160
140
120
100
80
60
40

MEAN RESPONSE TIME(MS):QUIZ START

20

12

192

96

22 25 26 28 2

13 15 17 18 2

5

100 200 300 400 500 600 700 800 900 1000 5000 10000
QUESTION LIBRARY SIZE

Graph3: Relation between question libraigize and mean response time fquiz start

31

32

5.0 Conclusion

We can conclude from the performance testing of GQ&s:

1 It can supporup toroughly1000 users stably. The only bottleneck of high gtazt
up time while increasing number of users can be minimized by choosing a small and
effective question library.

1 Java questions are expensive and should be usedewduhsidering the low
performance of answer checking.

1 Quiz logging has minimal effect on the performance of CQG.

1 onfiguration of server setup (RAM, djskhould be chosen according with

expected number of useand load

33

6.0 Future Work

We know tha the quizstart uptime ishigh when the question library size is big. In the
future CQG quistart uptime can be reduced by identifying the cause and applying the
appropriatepatch. Each patch can be measured using the test framework implemented

this projectuntil the caused is identified

Furthermore, other quiz types like networking and multiple choice can be measured and

analysedasour hypothesis ishat thesequiz types are fast and cheap.

34

7.0 References

The sources arbsted in the order in which they are cited in the report, as in the following
book and article.

[1] Apache Projecthttp://www.apache.org/

[2] http://www.webopedia.com/TERM/T/TCP.html

[3] https://en.wikipedia.org/w/index.php?title=Hypertext Transfer Protocol&redirect=no
[4] https://en.wikipedia.org/wiki/Protocol data unit

http://www.apache.org/
http://www.webopedia.com/TERM/T/TCP.html
https://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&redirect=no
https://en.wikipedia.org/wiki/Protocol_data_unit

