Thermodynamically admissible boundary conditions for the regularized 13 moment equations
Anirudh Singh Rana and Henning Struchtrup

Citation: Physics of Fluids 28, 027105 (2016); doi: 10.1063/1.4941293
View online: http://dx.doi.org/10.1063/1.4941293
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/28/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Boundary conditions for the one-dimensional nonlinear nonstationary Boltzmann’s moment system equations

Maxwell boundary condition and velocity dependent accommodation coefficient

Couette and Poiseuille microflows: Analytical solutions for regularized 13-moment equations
Phys. Fluids 21, 017102 (2009); 10.1063/1.3064123

Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition

Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients
Phys. Fluids 14, 4123 (2002); 10.1063/1.1514973
Thermodynamically admissible boundary conditions for the regularized 13 moment equations

Anirudh Singh Rana1,a) and Henning Struchtrup2,b)

1Department of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
2Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada

(Received 21 September 2015; accepted 20 January 2016; published online 5 February 2016)

A phenomenological approach to the boundary conditions for linearized R13 equations is derived using the second law of thermodynamics. The phenomenological coefficients appearing in the boundary conditions are calculated by comparing the slip, jump, and thermal creep coefficients with linearized Boltzmann solutions for Maxwell’s accommodation model for different values of the accommodation coefficient. For this, the linearized R13 equations are solved for viscous slip, thermal creep, and temperature jump problems and the results are compared to the solutions of the linearized Boltzmann equation. The influence of different collision models (hard-sphere, Bhatnagar–Gross–Krook, and Maxwell molecules) and accommodation coefficients on the phenomenological coefficients is studied. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941293]

I. INTRODUCTION

Transport mechanisms in a gas under rarefied conditions pose unique challenges in present fluid mechanics. Such rarefied conditions occur, for example, in micro-electro-mechanical systems (MEMS), and high vacuum systems, where the dimensions of the devices are comparable to the mean free path of the gas molecules.11,20 Accordingly, the degree of rarefaction in a gas is characterized by the Knudsen number, Kn, which is defined as the ratio of the molecular mean free path to the macroscopic length scale. Based on the value of the Knudsen number, the gas flow can be classified into four regimes: hydrodynamic regime ($Kn \leq 0.001$), slip flow regime ($0.001 \leq Kn \leq 0.01$), transition regime ($0.01 \leq Kn \leq 10$), and free molecular flow regime ($10 \leq Kn$).11,20 It is commonly accepted that the classical description based on the Navier-Stokes and Fourier (NSF) equations is applicable only for the hydrodynamic flow regime.13,38,55 For flows outside the hydrodynamic regime, many interesting rarefaction effects are observed, such as velocity slip and temperature jump at the walls,24,38,46 Knudsen layers,13,23,38 transpiration flow,13,25,38 thermal stress,30,38 and heat flux without temperature gradients.27,31 These effects are termed as non-equilibrium effects and they cannot be described by the classical NSF equations. The range of validity of the NSF equations may further be extended to the slip flow regime by applying appropriate slip and jump boundary conditions to model the velocity slip and temperature jump at the walls, as well as transpiration flows.59 However, they still cannot describe the Knudsen layers and other rarefaction effects.

A fully detailed description of the gas flow in all flow regimes is offered by the Boltzmann equation, which solves for the microscopic distribution function of the gas particles.2,6 The solution of the Boltzmann equation is usually cumbersome, and computationally expensive. In macroscopic models, on the other hand, the behavior of a gas is described through physical quantities such as

a)Electronic mail: anirudh@uvic.ca
b)Electronic mail: struchtr@uvic.ca
mass density, temperature, velocity, heat flux, stress tensor, and so on. The goal of these macroscopic transport equations is to reduce the high dimensional phase space of the particle description to a low-dimensional continuum model by relating the physical quantities to moments of the distribution function.

Macroscopic equations are obtained by an asymptotic reduction of the Boltzmann equation at different levels of approximation and accuracy. Conventionally, these equations are derived with either the Chapman-Enskog (CE) expansion method or Grad’s moment method. The NSF equations can be obtained from the first order CE expansion of the Boltzmann equation. The second and third order CE expansions result in the Burnett and super-Burnett equations, respectively. The Burnett-type equations can describe rarefaction effects in the lower transition regime (Kn ≤ 1) with reasonable accuracy, they suffer from instabilities for time-dependent problems. Several modified forms of the Burnett equations have been suggested in the literature that are stable, however, at present, no boundary conditions are available for any of these sets of equations. The 13 moment equations, obtained via Grad’s moment method, are linearly stable but due to their hyperbolic character, Grad’s 13 (G13) moment equations produce unphysical sub-shocks for high speed flows (Ma ≥ 1). Furthermore, in Grad’s method, the number of moments is arbitrary, and therefore it is difficult to know a priori which sets of moments should be considered for a given process.

The regularized 13 (R13) moment equations, obtained by means of the order of magnitude method, provide a clear relation between Knudsen number and the appropriate set of moment to be considered, as seen in Refs. and also Ref. In Ref. it was shown that the G13 equations are of second order in the Knudsen number, while the R13 equations are of third order consequently, the Burnett and super-Burnett equations can be obtained by CE expansion of the R13 equations. The R13 equations are always linearly stable and give smooth shock structures for all Mach numbers, particularly, in good agreement with kinetic theory for Ma ≲ 3.

The macroscopic boundary conditions (MBCs) for the R13 equations were already derived in Refs. and by introducing the Grad’s 26 moment closure in Maxwell’s accommodation model. It turned out that the original nonlinear R13 equations require more boundary conditions than those required for the linearized R13 equations, and this issue was discussed in Refs. and In Refs. and, we used order of magnitude arguments to rewrite the non-linear part of the R13 equations such that the third order accuracy was maintained, but linear and nonlinear R13 equations require the same number of boundary conditions. Recently, the R13 equations for the hard sphere (HS) gas, gas-mixtures, and for polyatomic gases were derived in Refs. and.

Taheri et al. considered in Refs. the closed-form solutions of the linearized R13 equations to several boundary value problems using MBC, which were qualitatively in good agreement with the reference solutions. In Ref., the breakdown of the Onsager symmetry relations was reported for pressure-driven and thermally driven rarefied gas flows in long capillaries using extended macroscopic models. It was shown that the linearized R13 equations obey (approximately) the Onsager reciprocity relation for moderate Knudsen numbers, Kn ≤ 0.25.

Young in Ref. calculated the Knudsen layers and jump coefficients using linearized G13 equations and R13 equations. He showed that when compared with the direct solutions of the Boltzmann equation, the R13 equations with the MBC underpredict the velocity slip, thermal creep, and temperature jump coefficients by about 10%.

In the present paper, we shall address two issues regarding the violation of Onsager reciprocity relations and the underprediction of the slip, jump, and creep coefficients by MBC for R13 equations. First, we shall derive phenomenological boundary conditions (PBCs) for the R13 equations, which are thermodynamically admissible for all processes. Furthermore, the phenomenological coefficients in these boundary conditions are obtained such that the R13 equation gives correct velocity slip, thermal creep, and temperature jump coefficients in the bulk (i.e., outside of the Knudsen layers). Earlier, in Ref., Torrilhon and Struchtrup introduced ad hoc coefficients in the boundary conditions, so that an overall agreement with DSMC solutions was achieved. The reason for these corrections, as discussed in Ref., is that the R13 equations cannot describe Knudsen layers completely, due to the lack of sublayer contributions from higher moments, see also Refs. and. In the case of NSF, where Knudsen layers are completely absent, it is well known...
that the slip and jump boundary conditions must be modified with artificial coefficients known as the slip and jump corrections, see Ref. 59. However, the extended moment equations, such as R13 equations, contain additional higher order moments and their respective boundary conditions, and without any physical meaning associated with these additional moments, a rational procedure to find corrected coefficients is required.

A phenomenological model of the wall boundary was presented in Ref. 45, which laid the foundation of the present work. To generalize the procedure in Ref. 45, in this paper, we consider the coupling between the cross terms of the same tensorial structure (i.e., the Curie principle). When such coupling is considered, the resulting PBCs assume the same tensorial form as the MBC obtained via Grad’s 26 moment closure in the Maxwell accommodation model,33 with additional coefficients (Onsager coefficients). This allows us to identify and estimate the values for the Onsager coefficients in phenomenological boundary conditions. The presented theory gives thermodynamical restrictions on these coefficients. Furthermore, we revisit the Onsager symmetry using the linearized R13 equations and show that the violation of the Onsager symmetry relations as reported in Ref. 50 is due to the use of macroscopic boundary conditions, while the phenomenological boundary conditions obtained in this article comply with the Onsager symmetry relations for all Knudsen numbers.

The rest of the paper is organized as follows: The linearized R13 equations and their extended entropy law are summarized in Sec. II. The phenomenological boundary conditions for the linearized R13 equations are presented in Sec. III. To obtain some insight into the phenomenological coefficients appearing in the boundary conditions, in Sec. IV, we estimate the phenomenological coefficients by comparing the phenomenological boundary conditions with the macroscopic boundary conditions obtained from the Grad’s closure. The breakdown of the Onsager symmetry relations for macroscopic boundary conditions is briefly examined in Sec. IV B. In Sec. V, the phenomenological coefficients are re-evaluated by comparing the slip, jump, and creep coefficients with the linearized Boltzmann solutions for different values of the accommodation coefficient. Our conclusions are reported in Sec. VI. The first two Appendices A and B list the normal-tangential decompositions for the tensors and the integration constants, respectively. Appendix C provides details regarding the derivation of phenomenological boundary conditions.

II. LINEARIZED EQUATIONS AND DIMENSIONLESS VARIABLES

We shall only consider flow conditions where the deviations from a constant equilibrium state, given by the reference mass density \(\rho_0 \) and the reference temperature \(T_0 \), are small. Thereby, the governing equations can be linearized with respect to the reference equilibrium rest state. Also the model will be put into dimensionless form using non-dimensional quantities, defined as

\[
\begin{align*}
\hat{x}_i &= \frac{x_i}{L}, \\
\hat{\rho} &= \frac{\rho}{\rho_0}, \\
\hat{T} &= \frac{T}{T_0}, \\
\hat{\rho} &= \frac{p}{p_0}, \\
\hat{\sigma}_{ij} &= \frac{\sigma_{ij}}{\rho_0 R T_0}, \\
\hat{q}_i &= \frac{q_i}{\rho_0 \sqrt{R T_0}},
\end{align*}
\]

where \(L \) is a reference length and \(R \) is the gas constant. The hat over quantities indicates the corresponding non-dimensional quantity. For brevity, the hats will be removed hereafter, and unless otherwise stated, all variables will be given in non-dimensional form. The dimensionless R13 equations, after linearization, are written through conservation laws of mass, momentum, and energy, that are

\[
\begin{align}
\frac{D\hat{\rho}}{Dt} + \frac{\partial \hat{v}_k}{\partial x_k} &= 0, \\
\frac{D\hat{v}_i}{Dt} + \frac{\partial \sigma_{ik}}{\partial x_k} + \frac{\partial \hat{p}}{\partial x_i} &= F_i, \\
\frac{3}{2} \frac{D\hat{T}}{Dt} + \frac{\partial \hat{v}_k}{\partial x_k} + \frac{\partial \hat{q}_k}{\partial x_k} &= 0,
\end{align}
\]
where \(F_i \) is the dimensionless body force. The pressure is given by
\[p = \rho T \] (or \(p = 1 + \rho + T \) after linearization), due to the assumption of ideal gas. The balance equations (linearized) for the stress tensor, \(\sigma_{ij} \), and heat flux vector, \(q_i \), are given as \(^{41}\)

\[
\frac{D\sigma_{ij}}{Dt} + \frac{4}{5} \Pr \frac{\sigma_{ij}}{\sigma_{2} \partial x_j} + \frac{\partial m_{ijk}}{\partial x_k} = -\frac{2}{\omega^2} \frac{1}{Kn} \left[\sigma_{ij} + 2Kn \frac{\partial v_{l}(i)}{\partial x_j} \right]
\]

and

\[
\frac{Dq_i}{Dt} + \frac{5}{4} \frac{\theta_2}{\theta_1} \frac{\partial \sigma_{ij}}{\partial x_k} + \frac{1}{2} \frac{\partial R_{ik}}{\partial x_k} + \frac{1}{6} \frac{\partial \Delta}{\partial x_i} = -\frac{1}{\theta_1} \frac{5}{2} \frac{1}{Kn} \left[q_i + \frac{5}{2} \frac{Kn}{\theta_1} \frac{\partial T}{\partial x_i} \right],
\]

respectively. Here, \(\sigma_{ij}, \theta_1 \) are the Burnett coefficients and \(\Pr \) denotes the Prandtl number. These depend upon the choice of intermolecular potential function appearing in Boltzmann’s collision integral. \(^{8,41}\) Values of these coefficients for inverse-power potentials (i.e., the molecules repelling each other with an intermolecular force \(\propto r^{-\nu} \)) can be found in Table I. \(^{41}\)

In addition to the stress tensor, \(\sigma_{ij} \), and the heat flux vector, \(q_i \), Equations (3) contain higher order moments, i.e., \(m_{ijk}, R_{ik}, \) and \(\Delta \). For first order models, it is sufficient to consider only the terms on the right-hand side of Equations (3), which gives the linearized laws of Navier-Stokes and Fourier. For Maxwell molecules (MMs), i.e., the molecules repelling each other with an intermolecular force \(\propto r^{-5} \), the second order equations turn out to be the original G13 moment equations and give \(m_{ijk} = 0, R_{ij} = 0, \) and \(\Delta = 0 \). At third order accuracy, one arrives at the regularized 13 moment equations, see Ref. 41 and also Refs. 42 and 47. After linearization, they read

\[
m_{ijk} = -\frac{3Kn}{PrM} \frac{\partial \sigma_{ij}}{\partial x_k}, \quad R_{ij} = -\frac{28}{5} \frac{Kn}{PrR} \frac{\partial q_{l}(i)}{\partial x_j}, \quad \text{and} \quad \Delta = -\frac{8Kn}{PrA} \frac{\partial q_{k}}{\partial x_k},
\]

where transport coefficients \(\Pr, \PrR, \PrM, \) and \(\PrA \) are given in Table II. Constitutive relations (4) complete conservation laws (2) and balance equations (3) to form the linear R13 equations.

As shown in Ref. 45, the linear R13 equations are accompanied by an entropy law given as

\[
\frac{D\eta}{Dt} + \frac{\partial \Psi_k}{\partial x_k} = \Sigma,
\]

where \(\eta = \dot{s}/R \) is the dimensionless entropy density, \(\Psi_k \) is entropy flux, and \(\Sigma \) is the entropy production rate. For the linear R13 equations, the entropy is a quadratic convex function, given as

\[
\eta = \eta_0 - \frac{T^2}{2} - \frac{3}{4} \frac{\sigma^2}{T} - \frac{v^2}{2} - \frac{\sigma^2}{8} - \frac{2T^2}{25} \Pr \frac{q^2}{R},
\]

and the entropy flux and entropy generation rate read

\[
\begin{array}{cccc}
\text{MM} & 2/3 & 7/6 & 3/2 & 2/3 \\
\text{BGK} & 1 & 1 & 1 & 1 \\
\text{HS} & 0.6609 & 1.3307 & 1.3951 & 0.9025 \\
\end{array}
\]

Table I. Burnett coefficients for Maxwell molecules (MMs), BGK model, and hard spheres (HS).

<table>
<thead>
<tr>
<th></th>
<th>(\sigma_2)</th>
<th>(\sigma_3 = \theta_4)</th>
<th>(\theta_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>2</td>
<td>3</td>
<td>(\frac{45}{2})</td>
</tr>
<tr>
<td>BGK</td>
<td>2</td>
<td>2</td>
<td>(\frac{7}{2})</td>
</tr>
<tr>
<td>HS</td>
<td>2.02774</td>
<td>2.42113</td>
<td>5.81945</td>
</tr>
</tbody>
</table>

Table II. Transport coefficients for Maxwell molecules (MMs), Bhatnagar–Gross–Krook (BGK), and Hard-Sphere (HS) collision models.

<table>
<thead>
<tr>
<th></th>
<th>(\Pr)</th>
<th>(\PrR)</th>
<th>(\PrM)</th>
<th>(\PrA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>2/3</td>
<td>7/6</td>
<td>3/2</td>
<td>2/3</td>
</tr>
<tr>
<td>BGK</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HS</td>
<td>0.6609</td>
<td>1.3307</td>
<td>1.3951</td>
<td>0.9025</td>
</tr>
</tbody>
</table>

Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 142.104.86.97 On: Tue, 09 Feb 2016 18:59:57
III. PHENOMENOLOGICAL BOUNDARY CONDITIONS FOR THE LINEARIZED R13 EQUATIONS

Integrating entropy balance equation (5) directly on the interface and using Gauss’s theorem, we readily find that the entropy production density on an infinitesimal surface element is equal to the difference between the entropy fluxes into and out of the surface. For the wall in the rest frame, the local entropy production (per unit surface of the wall) reads

$$ \Sigma = \frac{\sigma_{ij}\sigma_{ij}}{2Kn} + \frac{2Pr}{5Kn} q^2 - \frac{\sigma_{ij}}{4} \frac{\partial \sigma_{ij}}{\partial x_k} - \frac{2\theta_2}{25} Pr^2 R_k \frac{\partial q_k}{\partial x_k} - \frac{2\theta_2}{75} Pr^2 \Delta \frac{\partial q_k}{\partial x_k}, $$

respectively. Hence, R13 constitutive relations (4) give $\Sigma \geq 0$, for any thermodynamic process.

$$ \Psi_k = - (\rho + T) v_k - v_i \sigma_{ik} - T q_k - \frac{\sigma_3}{5} Pr q_i \sigma_{ik} - \frac{\sigma_2}{4} \sigma_{ij} m_{ij} - \frac{2\theta_2}{25} Pr^2 \left(q_i R_k + \frac{\Delta}{3} q_k \right), $$

where n_k denotes the components of the unit normal vector of the wall pointing toward the gas and ψ_k denotes the non-convective entropy flux from the wall. The entropy flux ψ_k in (8) is given from Equation (7a). For a gas-wall interface, the jump conditions of mass and energy at the impermeable boundary are written as

$$ (v_k - v_k^W) n_k = 0, \psi_k = -T^W q_k. $$

Here, v_k^W and T^W denote the velocity and temperature of the wall, respectively. We use relations (9) to eliminate ψ_k in Equation (8). This yields the entropy production per unit surface area as

$$ \Sigma_{W}^{LR13} = \left(-\nabla_i \sigma_{ik} - T q_k - \frac{\sigma_3}{5} Pr q_i \sigma_{ik} - \frac{\sigma_2}{4} \sigma_{ij} m_{ij} - \frac{2\theta_2}{25} Pr^2 \left(q_i R_k + \frac{\Delta}{3} q_k \right) \right) n_k, $$

where $\nabla = v_k - v_k^W$ and $T = T - T^W$ are velocity slip and temperature jump, respectively. It is convenient to decompose the right hand side in Equation (10) into the normal and tangential components of the vectors ∇_i and q_i and tensors σ_{ij}, R_{ij}, and m_{ij} (see Appendix A for the explicit expressions). In this case, Equation (10) simplifies to

$$ \Sigma_{W}^{LR13} = -q_n \left[T + \frac{\sigma_3}{5} Pr \sigma_{nn} + \frac{2\theta_2}{25} Pr^2 \left(R_{nn} + \frac{\Delta}{3} \right) - m_{nnn} \left[\frac{3\sigma_2}{8} \sigma_{nn} \right] - \bar{\sigma}_{nk} \left[\nabla k + \frac{\sigma_3}{5} Pr \bar{q}_k + \frac{\sigma_2}{2} \bar{m}_{nnk} \right] - \bar{R}_{nk} \left[\frac{2\theta_2}{25} Pr^2 \bar{q}_k \right] - \bar{m}_{nij} \left[\frac{\sigma_2}{4} \sigma_{ij} \right] \right]. $$

In the last equation, subscripts n indicate the normal components of a tensor, and there is no summation implied for repeated indices. As the definitions Appendix A show, in Equation (11), q_n, σ_{nn}, m_{nnn}, etc., are the rank zero tensors (i.e., scalars), $\bar{\sigma}_{nk}$, \bar{q}_k, \bar{m}_{nnk}, \bar{R}_{nk}, etc., are the rank one tensors (i.e., vectors), and finally \bar{m}_{nij}, $\bar{\sigma}_{ij}$, etc., are the rank two tensors (i.e., matrix). Therefore, first two terms in (11) are multiplication of scalers, third and fourth terms are the dot product of vectors, and the last term is the dot product of two matrices. Furthermore, in Equation (11), the fluxes with the odd degree in n (i.e., q_n, m_{nnn}, $\bar{\sigma}_{nk}$, \bar{R}_{nk}, \bar{m}_{nij}) are identified as the unknowns and the even moments as their driving forces (i.e., the expressions in square brackets). This is motivated from the observation of Grad which states that at the boundary only odd fluxes need to be prescribed. From Equation (11), a positive entropy production can be achieved by writing the unknown boundary values for the odd moments proportional to their driving forces. Thereby, we find the phenomenological boundary conditions for the linear R13-moment equations as (see Appendix C for the details)

$$ \bar{\sigma}_{nk} = -\zeta_0 \left[\nabla_k + \frac{\sigma_3}{5} Pr \bar{q}_k + \frac{\sigma_2}{2} \bar{m}_{nnk} \right] + \zeta_1 \frac{2\theta_2}{25} Pr^2 \bar{q}_k, $$

$$ \bar{R}_{nk} = \zeta_1 \left[\nabla_k + \frac{\sigma_3}{5} Pr \bar{q}_k + \frac{\sigma_2}{2} \bar{m}_{nnk} \right] - \zeta_2 \frac{2\theta_2}{25} Pr^2 \bar{q}_k, $$

(12a) (12b)
distribution function of specularly reflected particles Eq. (14), the particles that hit the wall are described by the gas distribution function \(f \) component of the microscopic velocities. In order to evaluate the macroscopic boundary conditions, where the accommodation coefficient is determined by only a few parameters, typically known as accommodation coefficients. The significance of the underlined terms in Eqs. (12) will be discussed in Sec. IV A.

IV. DETERMINATION OF PHENOMENOLOGICAL COEFFICIENTS

The phenomenological coefficients, \(\varsigma_i \) and \(\tau_i \), appearing in PBC (12) depend on the microscopic interaction between gas particles and the wall. Due to the complexity of gas-wall interactions, it is quite common in kinetic theory to use simplified microscopic gas-wall interaction models which are determined by only a few parameters, typically known as accommodation coefficients. Best known is Maxwell accommodation model, which uses only one single accommodation coefficient. In this section, we shall estimate the phenomenological coefficients corresponding to the Maxwell accommodation model. In Secs. V A and V B, we shall investigate the effects of the phenomenological coefficients on the slip and jump coefficients and match them with more accurate solutions obtained from the linearized Boltzmann equation.

A. Macroscopic boundary conditions from Maxwell accommodation model

For the Maxwell accommodation model, the velocity distribution function \(\tilde{f}(c) \) in an infinitesimal neighborhood of the wall is given as

\[
\tilde{f}(c) = \begin{cases}
\chi f_W(c_i) + (1 - \chi) f^{(\ast)}(c_i) & n_k(c_k - v_k^W) \geq 0 \\
\chi f_W(c_i) & n_k(c_k - v_k^W) < 0
\end{cases},
\]

(14)

where the accommodation coefficient \(\chi \in [0, 1] \) gives the fraction of the particles coming from the wall that have been diffused and reflected into the gas with a normal distribution \(f_W(v_k^W; T^W) \). In Eq. (14), the particles that hit the wall are described by the gas distribution function \(f \), and the distribution function of specularly reflected particles \(f^{(\ast)} \) is obtained by reversing the sign of normal component of the microscopic velocities. In order to evaluate the macroscopic boundary conditions, the gas distribution \(f \) in (14) must be approximated. In Ref. 16, Gu and Emerson used Grad’s 26 moment distribution function to approximate \(f \) in (14) to obtain MBC. Subsequently, Torrilhon and Struchtrup and Taheri et al. extended and refined these boundary conditions for the R13 equations. The macroscopic boundary conditions, after linearization, read

\[
\tilde{\tau}_{nk} = -\frac{2}{\pi} \frac{\chi}{2 - \chi} \left[T \frac{\theta_2}{5} \sigma_{nn} + \frac{2}{25} \frac{R_{nn} + \Delta}{3} \right],
\]

(15a)

\[
\tilde{R}_{nk} = \frac{2}{\pi} \frac{\chi}{2 - \chi} \left[T \frac{\theta_2}{5} \sigma_{nn} + \frac{5}{28} R_{nn} + \frac{\Delta}{15} \right],
\]

(15b)

\[
q_n = -\frac{2}{\pi} \frac{\chi}{2 - \chi} \left[T \frac{\theta_2}{5} \sigma_{nn} + \frac{7}{5} \sigma_{nn} - \frac{1}{14} R_{nn} + \frac{\Delta}{75} \right],
\]

(15c)

\[
m_{nnn} = \frac{2}{\pi} \frac{\chi}{2 - \chi} \left[T \frac{\theta_2}{5} \sigma_{nn} + \frac{14}{14} R_{nn} + \frac{\Delta}{75} \right],
\]

(15d)
\[\dot{m}_{ni} = -\sqrt{2} \frac{\chi}{\pi} \left[\tilde{\sigma}_{ij} + \frac{1}{14} \tilde{R}_{ij} \right]. \] \tag{15e}

A comparison of PBC (12) with MBC (15), derived for the Maxwell’s accommodation model, allows us to identify

\begin{align*}
\varsigma_0 &= \frac{\sqrt{2} \chi}{\pi} + \frac{\chi}{2} - \chi, \\
\tau_0 &= \frac{\tau_0}{5}, \\
\varsigma_1 &= \varsigma_0, \\
\varsigma_2 &= 13\varsigma_0, \\
\tau_1 &= \frac{\tau_0}{5}, \\
\tau_2 &= \frac{26\tau_0}{25}, \\
\tau_3 &= \tau_0.
\end{align*} \tag{16}

With the coefficients given in (16) and the Burnett coefficients from Table I, the difference between the PBC from Equations (12) and the MBC for the Maxwell’s accommodation model is in the underlined terms of Eqs. (12) and (15). We shall show in the next example that macroscopic boundary conditions (15) lead to the violation of the Onsager reciprocity relation,33–35,50 whereas the phenomenological boundary conditions satisfy the Onsager reciprocity relation for all Knudsen numbers.

B. An example: Rarefied gas flow in a long capillary

We consider a gas flow between two reservoirs, joined by a circular capillary of radius \(r_0 \) and length \(L (\gg r_0) \), as depicted in Fig. 1. The flow is driven by either a constant pressure gradient, \(P = \partial p/\partial z \), in \(z \)-direction, while the temperature in both reservoirs is the same (i.e., pressure driven Poiseuille flow) or a constant temperature gradient, \(\tau = \partial T/\partial z \), along \(z \)-direction, while the pressure in both reservoirs is the same (i.e., transpiration flow).

A cylindrical coordinate system \(x_i = \{ r, \phi, z \} \) is most appropriate for this problem, where \(r, \phi, \) and \(z \) are the radial, azimuthal, and axial coordinates, respectively. The flow is assumed to be fully developed, in steady state, axisymmetric and \(v_i = \{ 0, 0, v_z \} \). The solution of the linear R13 equations, under these assumptions, is obtained as50

\begin{align*}
\sigma_{rz} &= -P \frac{r}{2}, \\
v_z &= c_1 + P \frac{r^2}{4 \text{Kn}} - \frac{\text{Pr} \, \sigma_3}{5} q_z, \quad \tag{17a} \\
q_z &= P \frac{\text{Kn} \theta_1}{2} - r \frac{5 \text{Kn}}{2 \text{Pr}} + c_2 I_0 \left(\frac{\beta}{\text{Kn} r} \right), \quad \tag{17b} \\
R_{rz} &= - \frac{5 c_2}{\text{Pr} \, \beta \theta_2} I_1 \left(\frac{\beta}{\text{Kn} r} \right) \quad \text{and} \quad m_{rrz} = P \frac{3 \text{Kn}}{5 \text{Pr}^4} \tag{17c}
\end{align*}

where \(I_0 \) and \(I_1 \) are the modified Bessel functions of the first kind and \(\beta = 5 \sqrt{\frac{P \rho}{14 \text{Pr} \theta^2}} \). The integrating constants, \(c_1 \) and \(c_2 \), are obtained from boundary conditions (12) or (15).

FIG. 1. Schematic diagram illustrating Poiseuille flow and thermal transpiration flow through a long capillary.
The quantities of interest are the reduced thermal energy flow rate in the Poiseuille flow, E_T, and the reduced mass flow rate in transpiration flow, M_T, defined as in Refs. 35 and 50, i.e.,

$$E_T = \frac{4}{\sqrt{2}} \int_0^1 q_v r dr, \quad M_T = \frac{4}{\sqrt{2}} \int_0^1 v_r r dr. \tag{18}$$

For the steady state flow in the linear regime, Sharipov derived the Onsager-Casimir reciprocity relations as $E_T = M_T$ for the entire range of Knudsen numbers. In Fig. 2, E_T and M_T are compared for the PBC and MBC using the R13 equations. The results of the R13 equations with Maxwell molecules collision model are shown in Figs. 2(a) and 2(b) for $\chi = 1$ and 0.6, respectively. The solution of the Boltzmann equation for the reduced mass flow rate, obtained in Ref. 35, is also given in Fig. 2 for a comparison.

As shown in Fig. 2, the phenomenological boundary conditions and macroscopic boundary conditions both give the same reduced mass flow rate in transpiration flows. Furthermore, the phenomenological boundary conditions obey the reciprocity relation ($E_T = M_T$) for all Knudsen numbers; on the other hand, the macroscopic boundary conditions predict $E_T \approx M_T$ only for $Kn \lesssim 0.25$. However, not surprisingly, they both differ from Boltzmann results at larger Knudsen numbers. Here, it should be clearly stated that the Prandtl number given by the S-model and Maxwell molecules is the same; however, they differ in other Burnett coefficients. Therefore, the comparison between the S-model and Maxwell molecules is more qualitative rather than quantitative.

To summarize, macroscopic boundary conditions for the Maxwell’s accommodation model, derived using Grad’s closure, may violate the reciprocity relation for high Knudsen numbers, whereas phenomenological boundary conditions satisfy the reciprocity relation for all models as long as the matrix ζ in Eq. (13) is positive definite. This poor behavior of macroscopic boundary conditions stems from the approximation $f \approx f^\text{Grad}$ near the boundary in the derivation of MBC. Nevertheless, macroscopic boundary conditions provide an approximation for the phenomenological coefficients in phenomenological boundary conditions through Eqs. (16). For convenience, we shall write $\zeta_i = \frac{x}{2} \sqrt{\frac{2}{\pi}} \zeta_i^*$ and $\tau_i = \frac{2x}{\sqrt{\pi}} \sqrt{\frac{2}{\pi}} \tau_i^*$, where ζ_i^* and τ_i^* are correction coefficients with first approximations (16) as $\zeta_i^* \approx \tau_i^* \approx 1$.

V. CORRECTIONS FOR THE PHENOMENOLOGICAL COEFFICIENTS ζ_i^* AND τ_i^*

In what follows next, due to the considered geometries, the underlined terms in PBC (15) and MBC (15) vanish, and therefore the PBC and MBC both agree for $\zeta_i^* = \tau_i^* = 1$. In this section,
we shall investigate the effect of ζ^* and τ^* on the slip and jump coefficients and match them with those obtained from the linearized Boltzmann solutions for viscous slip and thermal creep and temperature jump problems.23,24,28

For viscous slip and thermal creep problems, the coordinates are chosen such that the wall is parallel to the x-direction and y is the direction perpendicular to the wall which is located at $y = 0$. The wall is stationary and kept at an ambient temperature T_0. Flow is assumed to be in steady-state, where velocity, temperature, and all other flow parameters will depend only on the y-coordinate and the only non-zero velocity component is along the x-direction.

In the viscous slip problem, also known as Kramers’ problem, the asymptotic velocity is assumed to be a linear function of y, and there is a constant velocity gradient normal to the wall in the y-direction, i.e., $\lim_{y \to -\infty} \frac{dv_x}{dy} = a$, see Fig. 3(a). In thermal transpiration flow, $\lim_{y \to -\infty} \frac{dv_x}{dy} = 0$ and the flow is driven by a constant temperature gradient in x-direction, i.e., $\partial T / \partial x = \tau$, while the pressure gradient along the flow direction is zero, see Fig. 3(b). The temperature jump problem in Fig. 3(c) will be discussed in Sec. V D.

In Ref. 28, Ohwada et al. computed the viscous slip and thermal creep coefficients by solving the linearized Boltzmann equation for the viscous slip and thermal creep flow problems, with the fully diffusive (i.e., $\chi = 1$) boundary conditions. Siewert and Sharipov36 applied the discrete-ordinates method to various model equations to obtain the viscous-slip and the thermal-slip coefficients for both the Maxwell boundary condition and the Cercignani–Lampis boundary condition.

\section{Solution of linearized R13 equations}

The equations involved in the viscous slip and transpiration flow problems, from the linearized R13 moment system of Equations (2)–(4), reduce to

\begin{equation}
\frac{d\sigma_{xy}}{dy} = 0, \quad \frac{dv_x}{dy} + \frac{Pr \sigma_3 dq_x}{5} = -\frac{\sigma_{xy}}{Kn} \cdot \frac{5}{2Pr} \tau + \frac{Pr \theta_2 dR_{xy}}{5} = -\frac{q_x}{Kn}.
\end{equation}

The R13 constitutive relations, obtained from Equations (4), are

\begin{equation}
m_{xy} = 0, \quad R_{xy} = \frac{-14 Kn dq_x}{5 Pr}. \tag{20}
\end{equation}

The general solution for Equations (19) and (20) reads

\begin{align}
\sigma_{xy} &= -a Kn v_x = c_1 + y a - \frac{Pr \sigma_3}{5} \left(c_2 e^{-\frac{y \beta}{Kn}} + c_3 e^{\frac{y \beta}{Kn}} \right), \tag{21a}

q_x &= \frac{-5 Kn}{2Pr} \tau + \left(c_2 e^{-\frac{y \beta}{Kn}} + c_3 e^{\frac{y \beta}{Kn}} \right), \tag{21b}
\end{align}
\[R_{xy} = \frac{14\beta}{5Pr} \left(c_2 e^{-\frac{\mu y}{\kappa x}} - c_3 e^{-\frac{\mu y}{\kappa x^2}} \right), m_{x,y} = 0, \]

where \(c_1, c_2, c_3 \) are constants of integration. In the above solutions, as \(y \to \infty, q_x \) and \(R_{xy} \) must remain finite; therefore, \(c_3 = 0 \). For both flow configurations, integration constants, \(c_1, c_2 \) in Eqs. (21), are evaluated from boundary conditions (12a) and (12b). They are presented in Appendix B 1. To be consistent with the dimensionless kinetic solutions given in Refs. 28 and 36, we took \(L_0 = \bar{l}_0 \sqrt{\pi}/2 \) and \(Kn = \bar{\mu}/\sqrt{2} \), where \(\bar{l}_0 \) and \(\bar{\mu} \) are mean free path and dimensionless viscosity (\(\bar{\mu} = 1 \) for BGK and \(\bar{\mu} = 1.27 \) for hard sphere\(^{28}\)).

B. Results for viscous-slip and thermal creep coefficients

The viscous-slip coefficients \(\eta_{VS} \) and thermal creep coefficients \(\eta_{TC} \), defined as

\[\eta_{VS} = \frac{X}{2-X} \frac{c_1}{aKn\sqrt{2\pi}}, \eta_{TC} = \frac{X}{2-X} \frac{c_1}{\tau Kn}, \]

are compared with the linearized Boltzmann solutions. The viscous-slip coefficients for \(\chi = 1 \) are listed in Table III. From Table III, \(\eta_{VS} \) as predicted from macroscopic boundary conditions (i.e., \(\chi_i = 1 \)) are about 10%, 6%, and 8% smaller than the reference values obtained from the linearized Boltzmann equation with BGK,\(^{28}\) HS,\(^{28}\) and MMs collision models,\(^{23}\) respectively. The values of the thermal creep coefficient, \(\eta_{TC} \) are also listed in Table III, together with the reference solutions for the linearized Boltzmann equation with BGK and hard sphere collision models. We could not find any data for thermal creep with the Maxwell molecules collision model. For BGK and hard sphere collision models, the macroscopic boundary conditions predictions are about 6% and 16% smaller than the reference solutions, respectively.

Viscous slip and thermal creep coefficients strongly depend on \(\chi_0^* \) and \(\chi_1^* \) through \(c_1 \) given in Appendix B 1, and only weakly depend on \(\chi_2^* \); hence, we choose \(\chi_2^* = 1 \) (the value given by the Maxwell accommodation model). Furthermore, the values for \(\chi_{0,1}^* \) can be chosen accordingly to give proper viscous slip coefficient, \(\eta_{VS} \) and thermal creep coefficient \(\eta_{TC} \). The corresponding values for the phenomenological coefficients \(\chi_0^* \) and \(\chi_1^* \), are given in Table III.

C. Detailed flow profiles for viscous slip and thermal creep flows

The profiles of defect velocity, \(v_x = ay \), for the viscous slip problem are shown in Fig. 4(a). The R13 solutions from Eqs. (21) obtained using macroscopic boundary conditions (dashed curve) and phenomenological boundary conditions (solid curve) with correction coefficients given from Table III are shown and compared with the results of the linearized Boltzmann equation with hard sphere collision model\(^{28}\) (circles). For proper scaling, the kinetic data are multiplied with the factor \(\sqrt{2} \).

<table>
<thead>
<tr>
<th>(\eta_{VS})</th>
<th>(\eta_{TC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>LBE</td>
</tr>
<tr>
<td>BGK</td>
<td>1.0373</td>
</tr>
<tr>
<td>HS</td>
<td>1.0450</td>
</tr>
<tr>
<td>MM</td>
<td>1.0431</td>
</tr>
</tbody>
</table>

TABLE III. Viscous-slip coefficients \(\eta_{VS} \) and thermal creep coefficients \(\eta_{TC} \) for BGK, hard sphere (HS), and the Maxwell molecules (MMs) collision models. Results obtained from the R13 equations with MBC are compared with the linearized Boltzmann equation (LBE) with BGK,\(^{28}\) hard sphere (HS),\(^{28}\) and Maxwell molecules (MM)\(^{23}\) collision models. Corresponding values for correction coefficients, \(\chi_i^* \) are tabulated.
FIG. 4. (a) Defect velocity and (b) tangential heat flux for the viscous slip problem: the R13 solutions obtained using macroscopic boundary conditions (denoted by dashed curve) and phenomenological boundary conditions (denoted by solid curve) with correction coefficients. The solution of the linearized Boltzmann equation with hard sphere collision model is denoted by circles.

Clearly, the R13 equations are unable to provide an accurate description of the Knudsen layer for velocity. From Eqs. (21), the R13 equations provide only one exponential function to describe the velocity in the Knudsen layer. The moment method approach, however, approximates the Knudsen layer as superposition of many exponential functions; hence, to fully resolve Knudsen layers, a sufficiently large number of moment equations are required. For example, the R26 equations provide two exponential layers to describe the velocity close to the wall, which provides a significant improvement in describing Knudsen layers. However, the convergence and uniqueness of the moment equations to the solution of the Boltzmann equations is not entirely clear. Torrilhon in Ref. 54 studies the convergence of moment hierarchies. For the cases studied in Ref. 54, the results show an initial non-monotonic convergence behavior for the considered families of moment equations but all systems of equations resolve Knudsen layers eventually when a sufficiently large number of moments are included.

Here, we are interested in the bulk behavior, in which the magnitude of the defect velocity given from Eq. (B1) is inversely proportional to ς_0^*. The macroscopic boundary conditions give $\varsigma_0^* = 1$; hence, in comparison to the linearized Boltzmann equation where $\varsigma_0^* \approx 0.9$, the macroscopic boundary conditions underpredict the defect velocity. As shown in Figure 4(a), the phenomenological boundary conditions give an accurate description of the bulk behavior, with the coefficients ς_i^* and τ_i^* given in Table III. The profiles for tangential heat flux are shown in Fig. 4(b). In the viscous slip problem, tangential heat flux is a rarefaction effect due to Knudsen layers, which cannot be predicted by NSF. The magnitude of tangential heat flux is proportional to the ratio $\varsigma_1^*/\varsigma_0^*$, given from Eq. (B6). The macroscopic boundary conditions give $\varsigma_1^*/\varsigma_0^* = 1$, whereas from Table III, this value is about 0.56; hence, the R13 equations, with macroscopic boundary conditions, overpredict the heat flux, while the phenomenological boundary conditions with corrected coefficients from Table III provide a good match.

In Fig. 5, profiles of velocity and heat flux in transpiration flow are shown for $\chi = 1$, with hard sphere collision model. Plots (a) and (b) compare the velocity and heat flux solutions of R13 equations, respectively, using macroscopic boundary conditions and phenomenological boundary conditions and linear Boltzmann equation solutions. The solution of the R13 equations with macroscopic boundary conditions shows about 15% error in transpiration velocity, with respect to kinetic data in the bulk. This error is corrected by using phenomenological boundary conditions with the coefficients provided in Table III. Note that, in transpiration flow, the magnitude of tangential heat flux only mildly depends on ς_1^* through c_0 in Eq. (B4). Therefore, in this case, the macroscopic boundary conditions and phenomenological boundary conditions both give similar solutions for the tangential heat flux. The results presented so far were exclusively for $\chi = 1$. In Ref. 36, Siewert solved the Boltzmann equation—for fully diffusive to specular walls—to determine the velocity slip and thermal creep coefficients, which we used to establish the relationship between
FIG. 5. (a) Defect velocity and (b) tangential heat flux for the transpiration flow problem: the R13 solutions obtained using macroscopic boundary conditions (denoted by dashed curve) and phenomenological boundary conditions (denoted by solid curve) with correction coefficients. The solution of the linearized Boltzmann equation with hard sphere collision model is denoted by circles.

phenomenological coefficients ς^*_i and accommodation coefficient χ. In Fig. 6, we show (a) the slip coefficient η_{VS} and (b) transpiration coefficient η_{TC} versus accommodation coefficient χ, using $\varsigma^*_0 = 0.9952 - 0.1033\chi$, $\varsigma^*_1 = 0.9853 - 0.2241\chi$, and $\varsigma^*_2 = 1$ for BGK, $\varsigma^*_0 = 0.9949 - 0.0874\chi$, $\varsigma^*_1 = 0.5587 - 0.0479\chi$, and $\varsigma^*_2 = 1$ for hard sphere, and $\varsigma^*_0 = \varsigma^*_1 = 0.9985 - 0.085\chi$ and $\varsigma^*_2 = 1$ for Maxwell molecules collision models. These expressions for ς^*_i are obtained by linear fitting with kinetic data from Refs. 36 and 56 for the BGK and hard sphere collision models, respectively, and Ref. 23 for the Maxwell molecules collision model.

D. Temperature jump problem

In the temperature jump problem, one considers stationary heat transfer in a gas occupying the $y \geq 0$ half-space domain with one wall located at $y = 0$, as demonstrated in Fig. 3(c). Far from the wall, the temperature is a linear function and there is a constant temperature gradient in y-direction, i.e., $\lim_{y \to -\infty} dT/dy = b$. The equations involved in the temperature jump problem are obtained from
TABLE IV. Temperature jump coefficient η_{TJ} for BGK, hard sphere, and the Maxwell molecules collision models are compared between the R13 equations using MBC and linearized Boltzmann equations. Corresponding values for correction coefficients, τ^*, are tabulated.

<table>
<thead>
<tr>
<th></th>
<th>MBC</th>
<th>LBE</th>
<th>τ_0^*</th>
<th>τ_1^*</th>
<th>τ_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGK</td>
<td>1.0189</td>
<td>1.176039</td>
<td>0.8642</td>
<td>0.8642</td>
<td>1</td>
</tr>
<tr>
<td>HS</td>
<td>1.0207</td>
<td>1.126739</td>
<td>0.9041</td>
<td>0.9041</td>
<td>1</td>
</tr>
<tr>
<td>MM</td>
<td>1.0209</td>
<td>1.162122</td>
<td>0.8762</td>
<td>0.8762</td>
<td>1</td>
</tr>
</tbody>
</table>

Equations (2c), (3a), and (3b) as

$$\frac{dq_y}{dy} = 0, \theta_1 \frac{d\sigma_{yy}}{dy} + \frac{5}{2 \text{Pr}} \frac{dT}{dy} = -\frac{q_y}{\text{Kn}}, \quad \frac{dm_{yy}}{dy} = -\frac{\sigma_{yy}}{\text{Kn}}.$$

The R13 constitutive relationships, obtained from Equations (4), are

$$m_{yy} = -\frac{9\text{Kn}}{5\text{Pr}_M} \frac{d\sigma_{yy}}{dy}, R_{yy} = 0, \text{ and } \Delta = 0.$$

The solution obtained from the Eqs. (23) and (24) is

$$q_y = \frac{-5\text{Kn}}{2 \text{Pr}} b, T = c_1 + y b - \frac{\text{Pr} \theta_1}{5} \left(c_2 e^{-\frac{y y}{\text{Kn}}} + c_3 e^{\frac{y y}{\text{Kn}}} \right),$$

$$\sigma_{yy} = c_2 e^{-\frac{y y}{\text{Kn}}} + c_3 e^{\frac{y y}{\text{Kn}}}, m_{yy} = \frac{9\gamma}{5\text{Pr}_M} \left(c_2 e^{-\frac{y y}{\text{Kn}}} - c_3 e^{\frac{y y}{\text{Kn}}} \right),$$

where $\gamma = \sqrt{\frac{10\text{Pr}_M}{9\sigma_2}}$, and c_1, c_2, c_3 are constants of integration, with $c_3 = 0$, because, as $y \to \infty$, σ_{yy} and m_{yy} must remain finite. The remaining constants c_1, c_2, obtained from boundary conditions (12c) and (12d), are given in Appendix B 2. The temperature jump coefficient, η_{TJ}, defined as

$$\eta_{TJ} = \frac{4\text{Pr}}{5} \sqrt{\frac{2}{\pi}} \frac{\chi}{2 - \chi} \frac{c_1}{b \text{Kn}},$$

for $\chi = 1$, is listed in Table IV. As with the case of viscous slip and thermal creep, the R13 equations with macroscopic boundary conditions underpredict the temperature jump coefficient by...
about 13%, 9%, and 12% with respect to the linear Boltzmann equation with BGK,39 hard sphere,39 and Maxwell molecules22 collision models, respectively. The corresponding correction coefficients, τ_i^*, are also listed in Table IV. Figure 7(a) presents the R13 solutions for the temperature defect, $T - b y$, in comparison to the Boltzmann solutions for the hard sphere collision model.39 Results are presented with fully diffusive walls ($\chi = 1$), and $b = 1$ with $Kn = 0.8980 (=\bar{\mu}/\sqrt{2})$. In Fig. 7(a), as before, the R13 equations cannot capture the Knudsen layer profile for temperature. Here, as well as in the earlier case, the offset in the bulk value results from the mismatch in the temperature jump and Knudsen layer at the boundary. With PBC corrections, the overall jump is corrected such that the bulk value is rectified. The results for the temperature jump coefficient η_{TJ} are shown in Fig. 7(b). Here, we compare the temperature jump coefficient obtained from the Boltzmann equation with those obtained from the R13 equations with macroscopic boundary conditions (i.e., $\tau_i^* = 1$) and the phenomenological boundary conditions with correction factors $\tau_0^* = \tau_i^* = 0.9920 - 0.1315 \chi$, $\tau_2^* = 1$ for BGK, $\tau_0^* = \tau_i^* = 0.9944 - 0.0932 \chi$, $\tau_2^* = 1$ for hard sphere, and $\tau_0^* = \tau_i^* = 0.9965 - 0.1221 \chi$, $\tau_2^* = 1$ for Maxwell molecules collision model. These expressions for τ_i^* are obtained by linear fitting to match the temperature jump coefficients for the linearized Boltzmann equation for BGK and hard sphere from Ref. 12 and Maxwell molecules Ref. 22 collision model.

VI. CONCLUSION

Evidently, the R13 equations cannot describe Knudsen layers completely due to the lack of sublayer contributions from higher moments. Knudsen layers arise from an eigenvalue problem for the moment equations, and thus to fully capture the Knudsen layer one must consider moment equations much beyond the 13 moments. Note that the moment equations themselves are not derived for the bulk flow, but from the Boltzmann equation, without any statement of being close or away from the wall. So the moment equations able to approximate the Knudsen-layer dominated processes accurately provided a sufficient number of moments which are considered in the approximation, although convergence is not proven. The question remains how to obtain an accurate result with as few moment variables as possible.

This paper presented a phenomenological approach to the boundary conditions for the linearized R13 equations using the second law of thermodynamics. To generalize earlier work,45 in this paper, we considered the cross-coupling between terms of the same tensorial structure. This procedure allowed us to identify and estimate the values of the unknown coefficients appearing in these phenomenological boundary conditions. It was also shown that the macroscopic boundary conditions, derived using Grad’s closure, violate the reciprocity relation for high Knudsen numbers, whereas the phenomenological boundary conditions satisfy the reciprocity relation for all Knudsen numbers and collision models, although the R13 equations are only accurate for small Knudsen numbers. The classical half-space problems of velocity slip, thermal creep, and temperature jump problems were revisited using the R13 equations. The macroscopic boundary conditions underpredict the slip, jump, and creep coefficients. The presented approach allowed us to systematically correct this mismatch through phenomenological coefficients, which were determined by comparing the R13 solutions with the linearized Boltzmann equations for three collision models (BGK, hard sphere, and Maxwell molecules) for arbitrary accommodation coefficient.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Basic Science Research Program No. NRF 2012-046270), Republic of Korea.

APPENDIX A: NORMAL AND TANGENTIAL COMPONENTS OF VECTORS AND TENSORS

The normal and tangential components of a vector q_i are defined as

$$q_n = q_i n_i$$

and

$$\tilde{q}_i = q_i - q_n n_i,$$

(A1)
respectively, and therefore by definition \(\dot{q}_kn_k = 0 \). Similarly, for a second order tensor \(\sigma_{ij} \) (trace free and symmetric), we can define a normal-normal component, \(\sigma_{nn} \), normal-tangential vector, \(\vec{\sigma}_{ni} \), and tangential-tangential tensor, \(\vec{\sigma}_{ij} \), as

\[
\sigma_{nn} = \sigma_{rk}n_kn_r, \quad (A2a)
\]

\[
\vec{\sigma}_{ni} = \sigma_{ik}n_k - \sigma_{nn}n_i, \quad (A2b)
\]

\[
\vec{\sigma}_{ij} = \sigma_{ij} - \sigma_{nn} \left(\frac{3}{2} n_in_j \right) - \vec{\sigma}_{ni}n_j - \vec{\sigma}_{nj}n_i. \quad (A2c)
\]

where by definition \(\vec{\sigma}_{nk}n_k = 0 = \vec{\sigma}_{kk} \) and \(\vec{\sigma}_{ik}n_k = 0 \). For a third order tensor \(m_{ijk} \) (symmetric and trace free), we may define

\[
m_{nnn} = m_{ijk}n_in_jn_k, \quad (A3a)
\]

\[
m_{nni} = m_{ijk}n_in_k - m_{nnn}n_i, \quad (A3b)
\]

\[
m_{nij} = m_{ijk}n_k - m_{nnn} \left(\frac{3}{2} n_in_j \right) - m_{nni}n_j - m_{nnj}n_i. \quad (A3c)
\]

Hence, by definition, \(m_{nnk}n_k = 0 \), \(m_{nik}n_k = 0 \), and \(m_{nkk} = 0 \).

APPENDIX B: INTEGRATION CONSTANTS

1. **Viscous slip and thermal creep problems**

Integrating constants obtained from Equations (12a) and (12b), for the viscous slip problem, simplify to

\[
c_1 = \sqrt{\frac{\pi}{2}} \alpha \left(\frac{\sqrt{2} \theta}{\sqrt{\theta^0}} + \frac{\theta^{2 \theta}}{\sqrt{\theta^0}} \right), \quad (B1)
\]

\[
c_2 = \sqrt{\frac{\pi}{2}} \alpha \left(\frac{\theta}{\sqrt{\theta^0}} + \frac{25 \pi \theta}{\sqrt{\theta^0}} \right), \quad (B2)
\]

and for the thermal creep problem, they read

\[
c_1 = \tau \left(\frac{\alpha}{\sqrt{2}} - \frac{\theta}{\sqrt{\theta^0}} \right), \quad (B3)
\]

\[
c_2 = \frac{5}{2 \theta} \tau \left(1 - \frac{25 \pi \theta}{\sqrt{\theta^0}} \right), \quad (B4)
\]

where we used abbreviations \(\alpha_0 = \frac{25 \pi \theta}{\sqrt{\theta^0}} \sqrt{\frac{7}{\pi} \frac{2}{\theta^2} \text{PrR} \text{PrR}} \), \(\alpha^* = \frac{\sqrt{7}}{2} \), and \(\alpha = \frac{x}{2 - x} \).

2. **Temperature jump problem**

Similarly, the constants for temperature jump problem can be obtained from their boundary conditions (12c) and (12d) as

\[
c_1 = \frac{5}{4 \theta} \sqrt{\frac{\pi}{2}} b \left(\frac{\alpha + \tau}{\sqrt{\alpha^0}} + \frac{\tau^2}{\sqrt{\alpha^0}} \right), \quad (B5)
\]

\[
c_2 = \frac{5}{4 \theta} \sqrt{\frac{\pi}{2}} b \left(\frac{\tau^2}{\sqrt{\alpha^0}} + \frac{4 \text{PrM}}{\sqrt{3 \alpha^0} \alpha^*} \right), \quad (B6)
\]

where \(\alpha_0 = \frac{10 \text{PrM}^2}{\sqrt{2} \theta} + \text{PrM}^2 \alpha^* \left(\frac{26 \pi \tau}{\sqrt{\alpha^0}} - \frac{\tau^{2 \theta}}{\sqrt{\alpha^0}} \right) \) and \(\alpha^* = \frac{x}{2-x} \).
APPENDIX C: DETAILS REGARDING THE DERIVATION OF PHENOMENOLOGICAL BOUNDARY CONDITIONS

The coupling between the cross terms of the same tensorial structure,\(^1\) i.e., scalars \((q_n, m_{nnn})\), vectors \((\bar{\sigma}_{nk}, \bar{R}_{nk})\), and matrix \(m_{nij}\) allows us to write Equation (11) as

\[
\Sigma^{LR11}_W = \sum_{a=0}^{2} \Sigma_a = -\sum_{a=0}^{2} \mathcal{F}_a \cdot \mathcal{F}_a. \tag{C1}
\]

Here, \(\Sigma_a\) is the contribution to the entropy production per unit surface area due to the corresponding thermodynamic force \((\mathcal{F}_a)\) and flux \((\mathcal{J}_a)\) pairs of the same tensorial structure, i.e., \(a = 0, 1, 2\) for scalars, vectors, and rank 2 tensors, respectively. Here, we have thermodynamic forces

\[
\mathcal{F}_0 = \{q_n, m_{nnn}\}, \quad \mathcal{F}_1 = \{\bar{\sigma}_{ni}, \bar{R}_{ni}\}, \quad \text{and} \quad \mathcal{F}_2 = \bar{m}_{nij}
\]

and fluxes

\[
\mathcal{J}_0 = \{q_n, m_{nnn}\}, \quad \mathcal{J}_1 = \{\bar{\sigma}_{ni}, \bar{R}_{ni}\}, \quad \text{and} \quad \mathcal{J}_2 = \bar{m}_{nij} \tag{C2}
\]

The positivity of the entropy production in (C1) is guaranteed if we take

\[
\mathcal{J}_0 = -\tau \cdot \mathcal{F}_0 \quad \text{and} \quad \mathcal{J}_1 = -\zeta \cdot \mathcal{F}_1,
\]

provided the matrices \(\tau\) and \(\zeta\) are positive definite.

