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ABSTRACT

In this dissertation, we study macroscopic traffic flow modeling for intelligent trans-

portation systems. Based on the characteristics of traffic flow evolution, and the

requirement to realistically predict and ameliorate traffic flow in high traffic regions,

we consider traffic flow modeling for intelligent transportation systems. Four major

traffic flow modeling issues, that is, accurately predicting the spatial adjustment of

traffic density, the traffic behavior on a long infinite road and on a road having egress

and ingress to the flow, affect of driver behavior on traffic flow, and the route merit are

investigated. The spatial adjustment of traffic density is investigated from a velocity

adjustment perspective. Then the traffic behavior based on the safe distance and safe

time is studied on a long infinite road for a transition and uniform flow. The traffic

flow transition behavior is also investigated for egress and ingress to the flow having

a regulation value which characterizes the driver response. The variation of regula-

tion value refines the traffic velocity and density distributions according to a slow or

aggressive driver response. Further, the influence of driver behavior on traffic flow is

studied. The driver behavior includes the physiological and psychological response.

In this dissertation, route merits are also developed to reduce the trip time, pollution

and fuel consumption. Performance results of the proposed models are presented.
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Chapter 1

Introduction

1.1 Motivation and Background

Traffic modeling has gained significant importance since the appearance of traffic jams

in the last decades. Traffic modeling is the characterization of traffic behavior. Con-

gested areas of traffic are those regions where volume of traffic due to traffic density

is high. It is envisioned that if a model accurately characterizes traffic behavior for

initial set of data, then employment of such model at congested areas will ameliorate

the traffic flow. Development of high traffic density over the distance along the road

is due to slow moving vehicles, accidents and traffic control elements. Employment of

models which accurately characterize traffic behavior will improve utilization of road

infrastructure as well as mitigate congestion and pollution. These models will also

reduce trip time and travelling cost. Traffic will take form of a pre-controlled system

by adjusting the traffic characteristics in advance. Examples include the dynamic

changes in traffic signs, overhead vehicle velocity monitored devices and synchronized

flow with traffic lamps. In this dissertation, new models are proposed to accurately

characterize the traffic flow behavior to improve the traffic conditions.

Traffic flow is categorized on the basis of traffic conditions on the road. The

terms used for traffic flow are homogeneous, inhomogeneous, equilibrium and non-

equilibrium flow. Inhomogeneous flow corresponds to traffic flow on a road with

different parameters at different locations, other wise flow is homogeneous.

Equilibrium flow is defined as the traffic flow whose velocity is a unique function of

density, otherwise flow is non-equilibrium. The velocity at equilibrium flow is known

as equilibrium velocity. Several models have been proposed for equilibrium velocity
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Figure 1.1: Greenshilelds equilibrium velocity distribution.

in the literature. The most commonly employed model is the Greenshields model [60]

which is given by

v(ρ) = vm

(

1− ρ

ρm

)

, (1.1)

where ρm and ρ are the maximum and average traffic densities, respectively, and vm

is the maximum velocity on the road. This shows that the density and velocity are

inversely related, so that velocity increases as the traffic density decreases and vice

versa.

Figure 1.1 demonstrates (1.1) with ρm = 1 and vm = 34 m/s. The average

normalized density ρ is varied from zero to ρm = 1. For minimum traffic density,

traffic has maximum velocity. At higher densities, velocity reduces and ultimately

reaches to zero m/s for 100% density on the road.

The traffic flow ρv based on equilibrium velocity distribution is given by Figure

1.2, which gives the flow information with change in density. It shows that flow of

traffic is maximum at 0.5 normalized density. 0.5 is the critical density, beyond which

the traffic flow reduces with the rise in density and traffic moves to congested zone.
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There are three main types of traffic models. Macroscopic models consider the col-

lective flow of vehicles, whereas microscopic models are used to examine the temporal

and spatial behavior of drivers based on the influence of vehicles in their proximity.

Mesoscopic models share the properties of macroscopic and microscopic traffic mod-

els as the time-space traffic flow behavior is modelled using probability distributions

and queuing theory. In this case, vehicles are modeled at an individual level and the

aggregate behavior is approximated. Thus, small groups of vehicles and their interac-

tions are considered. Examples include lane changing decisions based on velocity and

density distributions, and traffic acceleration based on velocity distributions. Macro-

scopic models are the most commonly employed because of their low complexity and

good overall performance.

In macroscopic models, the velocity and density are used to determine the cumu-

lative behavior of the traffic. The density ρ is the average number of vehicles on a

road segment per unit length, and the traffic flow is the product of velocity v and

density ρ, and so is measured in terms of vehicles per unit time. Lighthill, Whitham

and Richards [2, 41] developed a macroscopic traffic flow model (known as the LWR

model), which is based on the equilibrium flow of vehicles. They assumed vehicles

adjust their velocity in zero time [55], and ignored transitions in the traffic flow.

Some of the deficiencies of the LWR model are overcome by the Payne model

[1], which is a two equation model. The first equation is based on the continuity

equation for the conservation of vehicles on a road. The second equation models the

acceleration behavior of traffic based on driver anticipation, relaxation and traffic

inertia. Driver anticipation results from a presumption of changes in the forward

traffic density, while relaxation is the tendency of traffic to adjust its velocity to

a desirable velocity [53]. Inertia encompasses the spatial and temporal changes in

traffic acceleration. Witham independently developed a similar model [7] which is

known as the Payne-Witham (PW) model. This model is based on the assumption

that vehicles on a road have similar behavior. Smooth traffic velocities and density

distributions are assumed [3], i.e. the traffic velocity and density vary continuously

in space and time. Unfortunately, this can result in unrealistic velocity and density

behavior for abrupt changes (discontinuities) in the traffic flow [55]. Del Castillo et

al. [4] improved the PW model by incorporating the anticipation and reaction time

for small changes in density and velocity. The anticipation term characterizes driver

behavior such as the response to changes in the forward traffic density. However,

Daganzo [3] criticized the Del Castillo et al. model because the anticipation term is
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too large and so does not accurately model the physical behavior of traffic. Aw and

Rascle [8] provided an improved traffic model in which driver perception of temporal

and spatial changes in the traffic is assumed to be an increasing function of the traffic

density. However, the velocity profile of the traffic is not considered. It is assumed

that greater braking and acceleration occurs for a higher forward density regardless

of the velocity profile of the traffic.

The PW model was also improved by Berg, Mason and Woods, who developed

the BMW model [10] based on the headway developed between vehicles. At abrupt

changes in traffic flow, the spatial adjustment of traffic results in large traffic density

variations which evolve in space and time. A noise term based on the density is used

to reduce these variations and smooth the traffic flow so that it is more realistic. Other

macroscopic traffic models incorporate a similar term based on the second derivative

of the traffic velocity or density.

Some scientists looked into the traffic velocity in traffic flow modelling as metric

of fuel consumption and emission of pollutants to air [19], while others defined it

as route merit. A route merit is also defined as a trade off between distance, time,

congestion, difficulty and toll [24]. This route merit can also be on the basis of travel

time [26], [24] or distance [27]. The route merit is also based on the drivers familiarity

to the route and the delay occurred at traffic lamps [23].

From thorough investigation of the field, it is found that there are still some

significant improvements to be made. The most important is the adjustment of

traffic flow behavior based on the anticipated traffic conditions.

In this dissertation, we study the macroscopic traffic class to accurately model the

average behavior of traffic which fit well with the reality. More specifically, spatial

adjustment of traffic density in proportion to the anticipated traffic changes, affect of

driver response, distribution of traffic flow to achieve the anticipated changes and a

route merit will be systematically examined.

To evaluate the performance, Roe decomposition technique is used to implement

the two equation traffic flow models, whereas the Godunov scheme is used to imple-

ment the single equation traffic flow model, in this dissertation. The Roe technique

is presented in Section 1.2.
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1.2 Roe Decomposition Technique

The traffic models are discretized using Roe decomposition technique [11] to evaluate

their performance. This technique can be used to approximate a nonlinear system of

equations

Gt + f(G)x = S(G), (1.2)

where G denotes the vector of data variables, f(G) denotes the vector of functions

of the data variables, and S(G) is the vector of source terms. The subscripts t

and x denote the partial derivatives with respect to time and distance, respectively.

Equation (1.2) can be expressed as

∂G

∂t
+

∂f

∂G

∂G

∂x
= S(G), (1.3)

where ∂f

∂G
is the gradient of the function of data variables with respect to these vari-

ables. Let A(G) be the Jacobian matrix of the system. Then (1.3) can then be written

as
∂G

∂t
+ A(G)

∂G

∂x
= S(G). (1.4)

Setting the source term in (1.4) to zero gives the quasilinear form

∂G

∂t
+ A(G)

∂G

∂x
= 0. (1.5)

The data variables are density ρ and flow ρv in both the PW and improved models.

Roe’s technique is used to linearize the Jacobian matrix A(G) by decomposing it

into eigenvalues and eigenvectors. It is based on the concept that the data variables,

eigenvalues and eigenvectors remain conserved for small changes in time and distance.

This technique is widely employed because it is able to capture the effects of abrupt

changes in the data variables.

Consider a road divided into N equidistant segments and M equal duration time

steps. The total length is xN so a segment has length δx = xN/N , and the total time

duration is tM so a time step is δt = tM/M . The Jacobian matrix is approximated

for road segments (xi +
δx
2
, xi − δx

2
). This matrix is obtained for all N segments in

every time interval (tm+1, tm), where tm+1 − tm = δt.

Let △G denote the change in the data variables G and △f the corresponding

change in the functions of the data variables. Further, let Gi be the average values of

the data variables in the ith segment. The change in flux at the boundary between
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the ith and (i+ 1)th segments is given by

△fi+ 1

2

= A(Gi+ 1

2

)△G, (1.6)

where A(Gi+ 1

2

) is the Jacobian matrix at the segment boundary, and Gi+ 1

2

is the

vector of data variables at the boundary obtained using Roe’s technique. The flux

approximates the change in traffic density and flow at the segment boundary.

Then

△fi+ 1

2

= A(Gi+ 1

2

) (Gi+1 −Gi) , (1.7)

where the approximation △G = (Gi+1 −Gi) is used. The flux at the boundary

between segments i and i+ 1 at time m is then approximated by

fm
i+ 1

2

(Gm
i , G

m
i+1) =

1

2

(

f(Gm
i ) + f(Gm

i+1)
)

− 1

2
△fi+ 1

2

, (1.8)

where f(Gm
i ) and f(Gm

i+1) denote the values of the functions of the data variables in

road segments i and i+1, respectively, at time m. Substituting (1.7) into (1.8) gives

fm
i+ 1

2

(Gm
i , G

m
i+1) =

1

2

(

f(Gm
i ) + f(Gm

i+1)
)

− 1

2
A(Gi+ 1

2

)
(

Gm
i+1 −Gm

i

)

. (1.9)

This approximates the change in density and flow without considering the source.

The updated data variables are obtained by including the source term which gives

Gm+1
i = Gm

i − δt

δx

(

fm
i+ 1

2

− fm
i− 1

2

)

+ δtS(Gm
i ). (1.10)

1.3 Entropy Fix

Entropy fix is applied to Roe’s technique to smooth any discontinuities at the segment

boundaries [52]. The Jacobian matrix A(Gi+ 1

2

) is decomposed into its eigenvalues and

eigenvectors to approximate the flux in the road segments (1.9). Thus, the Jacobian

matrix for the road segments is replaced with the entropy fix solution given by

e|Λ|e−1,

where |Λ| =
[

λ̂1, λ̂2, . . . , λ̂k, . . . , λ̂n

]

is a diagonal matrix which is a function of the

eigenvalues λk of the Jacobian matrix, and e is the corresponding eigenvector matrix.
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The Harten and Hayman entropy fix scheme [59] is employed here and is given by

λ̂k =







δ̂k if |λk| < δ̂k

|λk| if |λk| ≥ δ̂k
(1.11)

with

δ̂k = max
(

0, λi+ 1

2

− λi, λi+1 − λi+ 1

2

)

. (1.12)

This ensures that the λ̂k are not negative and similar at the segment boundaries.

1.4 Dissertation Organization

This chapter served as introduction to traffic modelling for intelligent transportation

systems. The rest of dissertation is organized as follows:

Chapter 2 In this chapter, the characterization of spatial changes in traffic density

is investigated to smoothly align the traffic flow with forward traffic conditions.

The commonly employed Payne Witham (PW) model adjusts the traffic with a

constant velocity regardless of the transitions on a road. As a consequence, the

traffic can oscillate with velocities that exceed the maximum or go below zero.

In this chapter, the PW model is improved so that the velocity during traffic

adjustments is inversely proportional to the traffic density. This is based on

the fact that traffic adapts quicker for a smaller forward traffic density and vice

versa. A discontinuous traffic density distribution caused by a bottleneck along

both straight and circular roads is used to show that this new model eliminates

the unrealistic oscillatory behavior of the PW model.

Chapter 3 Traffic flow is known to align itself to forward traffic conditions, and the

time and distance required for alignment has a significant affect on the traffic

density. Thus, in this chapter, the well-known Lighthill, Witham and Richards

(LWR) model is improved to account for traffic behavior during this transi-

tion period. A model for the inhomogeneous traffic flow during transitions is

proposed which can be used to determine how the traffic density distribution

changes. Later in the chapter, both the proposed and LWR models are evalu-

ated.

Chapter 4 Traffic flow will align itself to forward conditions. The time and distance
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required for alignment can have a significant affect on the traffic density. The

flow can evolve into clusters of vehicles or become uniform depending on pa-

rameters such as the safe time and safe distance. In this chapter, a new model

is presented to provide a realistic characterization of traffic behavior during the

alignment period. Results are presented for a discontinuous density distribution

on a circular road which shows that this model produces more realistic traffic

behavior than other models in the literature.

Chapter 5 A new macroscopic traffic flow model is proposed to accurately represent

traffic behavior. This model is based on analogies with the ideal gas law. As with

the ideal gas constant, a traffic constant is developed for the characterization

of driver response. This response includes both physiological and psychological

behavior. The physiological behavior includes the time taken to perceive and

process traffic situations and the resulting actions. The psychological behavior

is the response to a situation based on driver attitude and awareness. Thus,

this constant encompasses the perception, awareness, attitude and reaction of a

driver. The proposed model is evaluated for a transition caused by a bottleneck

on a road and is compared with the well known Payne-Witham (PW) model.

It is shown that including the driver response results in a more realistic traffic

model.

Chapter 6 In this chapter, route merits such as Mach number, relative trip time and

traffic resistance are proposed to minimize the trip time, improve fuel consump-

tion and smooth the traffic flow. In this chapter, Mach number is developed

as an indicator of velocity fluctuation in traffic. Relative trip time gives the

comparison of trip time of a route when followed with different velocity. The

traffic resistance is developed from the analogies of fluid pressure. Just like fluid

pressure, traffic resistance depends on acceleration and density. This traffic re-

sistance identifies a route with smaller transitions. The traffic resistance based

on electric circuit theory is noteworthy.

Chapter 7 concludes the dissertation. This chapter provides brief summary of the

dissertation contributions and extension and employment of this dissertation

work in future.
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Chapter 2

Traffic flow Model based on

Anticipation

The realistic characterization of traffic density on a road is of significant importance in

traffic modelling. This characterization is required for proper alignment with forward

traffic conditions. To realistically predict the traffic density evolution, it is essential

that the velocity stay within the maximum and minimum values. The traffic density

evolves according to changes in velocity, and a density distribution with a low variance

is expected at smaller velocities and vice versa. Traffic cannot align to forward traffic

conditions instantaneously. The time required for traffic alignment is known as the

transition time, ttr. The distance required for alignment is the transition distance, dtr,

which is covered during the transition time. The transition distance is the distance

required to achieve the equilibrium velocity distribution when a change in traffic

flow is observed. Therefore, a traffic flow model is proposed which characterizes the

evolution of the traffic density during a transition on the road which is based on the

velocity.

In this chapter, an improvement to the PW model is proposed so that the spa-

tial alignment of the traffic density occurs with a variable velocity. The PW model

is known to produce unrealistic oscillatory behavior at traffic discontinuities. This

behavior corresponds to a stop and go traffic flow and is due to an inadequate char-

acterization of spatial changes in the traffic density during transitions. Traffic ad-

justments are assumed to occur with a constant velocity, which can result in the

velocity at discontinuities exceeding the maximum or below zero, which is impossi-

ble. Driver anticipation depends on the average traffic velocity at the transition v,
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the equilibrium velocity distribution v(ρ) and the transition distance dtr. An antic-

ipation term is introduced which eliminates the PW model inconsistencies present

due to the smooth density and velocity distributions [43] assumed for vehicle flow.

To investigate the oscillatory behavior of the PW model and the effect of the model

improvement, an inactive bottleneck on straight and circular roads is considered. An

inactive bottleneck is defined as congestion resulting from either a large density or

slow moving vehicles, and thus creates a transition in the traffic.

The rest of the chapter is organized as follows. Section 2.1 presents the PW and

improved PW models. Section 2.2 gives the decomposition of the models with Roe’s

technique. A comparison of the PW and proposed models is presented in Section 2.3.

Finally, some concluding remarks are given in Section 2.4.

2.1 Traffic Flow Models

Payne [1] and Whitham [7] independently developed a two equation model for traffic

flow which is known as the Payne-Whitham (PW) model. The first equation models

traffic conservation on the road with a constant number of vehicles. The second

equation models the traffic acceleration. The PW model can be expressed as

∂ρ

∂t
+

∂(ρv)

∂x
= 0, (2.1)

∂v

∂t
+

v∂v

∂x
= −C2

o

ρ

∂ρ

∂x
+

(

v(ρ)− v

τ

)

. (2.2)

The model parameters are summarized in Table 2.1. Co is the velocity constant and

τ is the relaxation time to align the traffic velocities. v(ρ)−v

τ
is the relaxation term

and accounts for the alignment in velocity. The anticipation term is

C2
o

ρ

∂ρ

∂x
,

and accounts for spatial changes in the traffic density. It is a function of the spa-

tial gradient of density ∂ρ

∂x
. According to the relaxation term, traffic adjusts to the

equilibrium velocity distribution. Once traffic attains the equilibrium velocity distri-

bution, the flow is homogeneous. Several models have been proposed for v(ρ) which

is determined by the density distribution [32]. A commonly employed model is the
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Table 2.1: PW Model Parameters

Term Description
ρ Density
v(ρ) Equilibrium velocity distribution
ρv Flow (Momentum)
C2

o

ρ

∂ρ

∂x
Anticipation term

v(ρ)−v

τ
Relaxation term

τ Relaxation time
v∂v
∂x

Convective acceleration
∂v
∂t

Unsteady acceleration
∂v
∂t

+ v∂v
∂x

Inertial term
C0 Velocity constant
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Greenshields model [60, 33] which is given by

v(ρ) = vm

(

1− ρ

ρm

)

, (2.3)

where ρm and ρ are the maximum and average traffic densities, respectively, and vm

is the maximum velocity on the road. This shows that the density and velocity are

inversely related, so that velocity increases as the traffic density decreases and vice

versa. The inertial term ∂v
∂t
+ v∂v

∂x
accounts for the unsteady acceleration (with respect

to time) and convectional acceleration (with respect to changes in vehicle positions).

It is a function of the spatial change in density and the relaxation term.

In the PW model, the spatial change in density is multiplied by a constant coef-

ficient, C2
o , having units m2/s2. However, this constant can only account for small

changes in the forward traffic density, so large changes result in unrealistic behavior.

At traffic density discontinuities, the anticipation term can be very large. Thus, a

variable anticipation term should be employed which is a function of the transition

velocity.

The well known kinematic equation of motion is

a =
V 2
f − V 2

i

2d
, (2.4)

where a is acceleration, Vf is the final velocity, Vi is the initial velocity, and d is

the distance covered. As Vf is the velocity to be attained, it is replaced with the

equilibrium velocity distribution v(ρ). Further, Vi is replaced with v, and d with the

transition distance dtr. The transition distance is given by

dtr = τvm + ls, (2.5)

where ls is the distance between the vehicles at stand still position [54]. Then (2.4)

takes the form

a(ρ) =
v2(ρ)− v2

2dtr
, (2.6)

having units m/s2 which characterizes the variation in velocity during transitions.

The change in velocity during a transition over a distance x is then given by

∂

∂x
a(ρ) =

∂

∂x

(

v2(ρ)−v2

2dtr

)

. (2.7)
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The term C2
o in (2.2) can be replaced with (2.7) to account for changes in the traffic

density when a transition occurs. Then, driver response to a discontinuity is such

that the velocity is lower for a large density and vice versa. Further, density changes

will be larger for smaller transition distances. Traffic velocity does not change if there

is no transition in the traffic flow, in which case v = v(ρ), so that a(ρ) = 0. Hence in

this case, the coefficient of ∂ρ

∂x
is zero.

2.2 The Decomposition of Traffic Flow Models

In order to evaluate the performance of the PW and improved PW models, they are

decomposed using Roe’s technique to approximate the macroscopic traffic flow. This

approach is described in Section 1.2.

2.2.1 Jacobian Matrix

In this section, the Jacobian matrix A(G) is derived. We first consider the PW model

and convert it into conservation form. To achieve this, multiply (2.1) by v to obtain

vρt + v(ρv)x = 0, (2.8)

where the subscripts t and x denote the partial derivatives with respect to time and

distance, respectively. (ρv)t can be written as

(ρv)t = ρvt + vρt, (2.9)

and rearranging gives

vρt = (ρv)t − ρvt, . (2.10)

Substituting (2.10) into (2.8), we obtain

ρvt = v(ρv)x + (ρv)t. (2.11)

Multiplying (2.2) by ρ gives

ρvt + ρvvx + C2
0ρx = ρ

v(ρ)− v

τ
, (2.12)



15

and substituting (2.11) in (2.12) results in

v(ρv)x + (ρv)t + ρvvx + C2
0ρx = ρ

v(ρ)− v

τ
. (2.13)

We have that

(ρvv)x = v(ρv)x + ρvvx, (2.14)

and rearranging gives

v(ρv)x = (ρvv)x − ρvvx. (2.15)

Substituting (2.15) in (2.13), we obtain

(ρvv)x + (ρv)t + C2
0ρx = ρ

v(ρ)− v

τ
. (2.16)

Now, using the fact that

(ρvv)x =

(

(ρv)2

ρ

)

x

,

(2.16) can be written as

(ρv)t +

(

(ρv)2

ρ
+ C2

0ρ

)

x

= ρ

(

v(ρ)− v

τ

)

, (2.17)

which is in conservation form. The source term can be considered as traffic movement

into and out of the flow. If the source term is assumed to be zero and traffic mobility

is conserved, then the RHS of (2.17) is zero which gives

(ρv)t +

(

(ρv)2

ρ
+ C2

0ρ

)

x

= 0. (2.18)

The model in quasilinear form is then

G =

(

ρ

ρv

)

, f(G) =

(

f1

f2

)

=

(

ρv
(ρv)2

ρ
+ C2

0ρ

)

and S(G) =

(

0

0

)

, (2.19)

The Jacobian matrix A(G) = ∂f

∂G
from (2.19) is

A(G) =

(

0 1

− (ρv)2

ρ2
+ C2

0
2ρv
ρ

)

, (2.20)



16

which gives

A(G) =

(

0 1

−v2 + C2
0 2v

)

. (2.21)

The eigenvalues λi of the Jacobian matrix are required to obtain the flux in (1.9),

and are obtained from (2.21) as the solution of

∣

∣

∣A(G)− λI
∣

∣

∣ =

∣

∣

∣

∣

∣

−λ 1

−v2 + C2
0 2v − λ

∣

∣

∣

∣

∣

= 0, (2.22)

which gives

λ2 − 2vλ+ v2 − C2
0 = 0. (2.23)

The eigenvalues are then

λ1,2 =
2v ±

√

4v2 − 4(v2 − C2
0)

2
= v ±

√

C2
0 . (2.24)

For the PW model

λ1,2 = v ± C0. (2.25)

For the improved PW model, we have

C2
0 =

∂

∂x

(

v2(ρ)−v2

2dtr

)

and substituting this in (2.16) for C2
0 gives the eigenvalues

λ1,2 = v ±
√

v2(ρ)− v2

2dtr
. (2.26)

The eigenvectors are obtained by solving

|A(G)− λI|x = 0, (2.27)

where

x =

(

1

x2

)

. (2.28)

For the PWmodel, using (2.21) and λ1 = v+C0 from (2.25), the eigenvectors obtained
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from (2.27) are

e1 =

(

1

v + C0

)

, (2.29)

and

e2 =

(

1

v − C0

)

. (2.30)

For the improved PW model, using (2.21) and λ1 = v +
√

v2(ρ)−v2

2dtr
from (2.26), (2.27)

takes the form




−v −
√

v2(ρ)−v2

2dtr
1

v2(ρ)−v2

2dtr
− v2 v −

√

v2(ρ)−v2

2dtr





(

1

x2

)

= 0, (2.31)

so the eigenvectors are

e1 =





1

v +
√

v2(ρ)−v2

2dtr



 , (2.32)

and

e2 =





1

v −
√

v2(ρ)−v2

2dtr



 . (2.33)

To obtain the average velocity for the improved PW model, using (1.6) and (2.21),

∆f can be expressed as

△f =

(

△f1

△f2

)

= A(G)△G =

(

0 1
v2(ρ)−v2

2dtr
− v2 2v

)(

△ρ

△ρv

)

. (2.34)

From (2.34), we have

△f2 =
(

v2(ρ)−v2

2dtr
− v2

)

△ρ+ 2v△ρv, (2.35)

and substituting C2
0 =

∫

∂

∂x

(

v2(ρ)−v2

2dtr

)

dx in (2.19) gives

f(G) =

(

f1

f2

)

=

(

ρv
(ρv)2

ρ
+ ρv2(ρ)−v2

2dtr

)

, (2.36)
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so then

△f(G) =

(

△f1

△f2

)

=

(

△(ρv)

△
(

(ρv)2

ρ
+ ρv2(ρ)−v2

2dtr

)

)

. (2.37)

Equating (2.35) with △f2 from (2.37), we obtain

v2△ρ− 2v△ρv +△ρv2 = 0, (2.38)

and taking the positive root gives the average velocity of the improved model as

v =
2△ρv + 2

√

(△ρv)2 − (△ρ)(△ρv2)

2△ρ
, (2.39)

Substituting △ρv = ρi+1vi+1 − ρivi, △ρv2 = ρi+1v
2
i+1 − ρiv

2
i , and △ρ = ρi+1 − ρi in

(2.39), the average velocity at the boundary of segments i and i+ 1 is

vi+ 1

2

=
vi+1

√
ρi+1 + vi

√
ρi√

ρi+1 +
√
ρi

. (2.40)

To obtain the average velocity for the PW model, using (1.6) and (2.21), ∆f can

be expressed as

△f =

(

△f1

△f2

)

= A(G)△G =

(

0 1

C2
0 − v2 2v

)(

△ρ

△ρv

)

. (2.41)

From (2.41), we obtain

△f2 = (−v2 + C2
0)△ρ+ 2v△ρv, (2.42)

and using (2.19) gives

f(G) =

(

f1

f2

)

=

(

(ρv)
(

(ρv)2

ρ
+ C2

0ρ
)

)

, (2.43)

so then

△f(G) =

(

△f1

△f2

)

=

(

△(ρv)

△
(

(ρv)2

ρ
+ C2

0ρ
)

)

. (2.44)
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Equating (2.42) with △f2 in (2.44) results in

v2△ρ− 2v△ρv +△ρv2 = 0, (2.45)

which is the same as for the improved PW model given in (2.38). Therefore, both

models have the same average velocity at the segment boundaries.

The average density ρi+ 1

2

at the boundary of segments i and i+ 1 is given by the

geometric mean of the densities in these segments

ρi+ 1

2

=
√
ρi+1ρi. (2.46)

The improved PW model eigenvalues of the Jacobian matrix A(Gi+ 1

2

) are

λ1,2 = vi+ 1

2

±

√

v2(ρi+ 1

2

)− v2
i+ 1

2

2dtr
, (2.47)

which show that when a transition occurs, the velocity changes according to the

equilibrium velocity distribution and the average velocity.

For a traffic flow system to be strictly hyperbolic, the eigenvectors must be distinct

and real [47]. The eigenvectors of the improved model given in (2.47) are distinct and

real when the equilibrium velocity is greater than the average velocity, i.e.

v(ρi+ 1

2

) > vi+ 1

2

.

However, the eigenvectors are imaginary when

v(ρi+ 1

2

) < vi+ 1

2

.

Therefore, to maintain the hyperbolicity of the improved PW model, the absolute

value of the numerator under the radical sign in (2.47) is employed, which gives

λ1,2 = vi+ 1

2

±

√

|v2(ρi+ 1

2

)− v2
i+ 1

2

|
2dtr

, (2.48)
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The corresponding eigenvectors are

e1,2 =





1

vi+ 1

2

±
√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr



 . (2.49)

The eigenvalues of the Jacobian matrix for the PW model are

λ1,2 = vi+ 1

2

± Co, (2.50)

which shows that the change in velocity due to a transition is constant. The corre-

sponding eigenvectors are

e1,2 =

(

1

vi+ 1

2

± Co

)

. (2.51)

2.2.2 Entropy Fix

Entropy fix as described in Section 1.2.1 is applied to the Jacobian matrix of the

improved and PW models. For the improved PW model, we obtain

e|Λ|e−1 =





1 1

vi+ 1

2

+

√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr
vi+ 1

2

−
√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr



×









∣

∣

∣

∣vi+ 1

2

+

√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr

∣

∣

∣

∣

0

0

∣

∣

∣

∣vi+ 1

2

−
√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr

∣

∣

∣

∣









×









vi+ 1

2

−
√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr
−1

−vi+ 1

2

−
√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr
1









×

−1

2

√

|v2(ρ
i+1

2

)−v2
i+1

2

|

2dtr

,

and for the PW model we have

e|Λ|e−1 =

(

1 1

vi+ 1

2

+ Co vi+ 1

2

− Co

)

×




∣

∣

∣vi+ 1

2

+ Co

∣

∣

∣ 0

0
∣

∣

∣vi+ 1

2

− Co

∣

∣

∣



×
(

vi+ 1

2

− Co −1

−vi+ 1

2

− Co 1

)

−1

2C0

.
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The corresponding flux is obtained from (1.9) using f(Gi) and f(Gi+1) and substi-

tuting e|Λ|e−1 for A(Gi+ 1

2

). The updated data variables, ρ and ρv, are then obtained

at time m using (1.10).

2.3 Simulation Results

The performance of the improved and PW models are evaluated in this section using

the parameters given in Table 2.2. Non-reflective boundary conditions are used for

the first example to evaluate the traffic evolution on a straight road for 1.2 s. The

second example employs periodic boundary conditions for traffic on a circular road

for 6 s. The traffic target is Greenshields equilibrium velocity distribution v(ρ) given

by (2.3) with vm = 25 m/s, ls = 7.5 m, and dtr = 20 m. Both models are evaluated

using a relaxation time τ = 0.5 s which is suitable for transitions over small distances

[57]. Further, a small value of δx is required to ensure accurate numerical results.

Therefore, the road of length xN = 100 m is divided into N = 100 equal segments

with δx = 1 m for both examples. Based on this value of δx, to satisfy the CFL

condition [46] δt = 0.006 s is chosen. Therefore, the time tM = 1.2 s for the first

example is divided into M = 200 intervals, and the time tM = 6 s for the second

example is divided into M = 1000 intervals. The initial density ρ0 at time t = 0 s

has the following distribution

ρ0 =



















0.01, for x ≤ 30;

0.3, for 30 < x < 60;

0.1, for x > 60,

(2.52)

which spans the first 100 m of the road. The maximum density on the road is ρm = 1

which means that it is 100% occupied. The values of the velocity constant used in

the literature for the PW model varies between 2.4 m/s and 57 m/s to evaluate the

performance in varying traffic densities [32, 58, 56]. Thus the values of C0 considered

here are 25 m/s and 5 m/s.

2.3.1 Example 1

The velocity behavior for the PW model with C0 = 25 m/s on a straight road is given

in Figure 2.1, while the corresponding behavior for the improved PW model is given
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Table 2.2: Simulation Parameters

Name Parameter Value
maximum velocity vm 25 m/s
equilibrium velocity distribution v(ρ) Greenshields distribution
relaxation time τ 0.5 s
velocity constant Co 25, 5 m/s
length of road xN 100 m
road step δx 1 m
time step δt 0.006 s
distance between the vehicles at stand still ls 7.5 m
transition distance dtr 20 m
maximum normalized density ρm 1
total simulation time for Example 1 tM 1.2 s
number of time steps for Example 1 M 200
total simulation time for Example 2 tM 6 s
number of time steps for Example 2 M 1000
number of road steps N 100
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in Figure 2.2. These results show that the PW model does not respond realistically to

abrupt changes in the traffic density. In particular, oscillatory behavior is observed

with velocities as high as 400 m/s and down to −120 m/s, which is impossible.

Conversely, the improved PW model results in realistic velocities between 0 m/s and

25 m/s.

The improved PW model density behavior is shown in Figure 2.3. Initially, the

density is 0.01 from 0 to 30 m on the road, and the corresponding velocity is 24.7

m/s from Figure 2.2. The density is 0.3 from 30 m to 60 m, and the corresponding

velocity is 17.5 m/s. As there are no vehicles at 60 m, the velocity is 25 m/s, which

is the maximum allowed. The traffic velocity is 22.4 m/s beyond 60 m. As time

passes the traffic moves forward so that after 1.2 s there are no vehicles on the first

20 m of the road, as shown in Figure 2.3. Further, the discontinuity advances and

becomes smoother, as expected. In particular, the discontinuity moves from 30 to 45

m in 1.2 s, and the density at the discontinuity is reduced from 0.3 from 0.27. It is

evident from the results in Figures 2.2 and 2.3 that the improved PW model does not

exhibit oscillatory behavior, and the density and velocity stay within the maximum

and minimum limits.

The PW model density behavior is shown in Figure 2.4. In this case, the dis-

continuity results in traffic oscillations. The traffic should move forward and leave

an empty road behind, but the figure indicates that there is traffic well behind the

transition. Further, the density after 1.2 s goes down to −0.05, which is impossible.

The density between 30 and 80 m on the road should be below the maximum initial

value of 0.3 after 1.2 s, but it actually increases to 0.35 at 70 m. This is unrealistic

behavior caused by the fact that the PW model density does not evolve according to

changes in the velocity.

The PW model traffic flow behavior is given in Figure 2.5. This figure also in-

dicates vehicles behind the transition, although traffic should move forward. The

traffic flow also goes below zero to −2 veh/s. The corresponding traffic flow behavior

for the improved PW model is given in Figure 2.6, and shows a smooth traffic flow.

At 1.2 s, there is no traffic flow on the road up to 20 m, i.e. in this region ρv = 0

veh/s. Further, the traffic flow at t = 0 when the density is 0.3 is 5.25 veh/s, and

this decreases over both distance and time, as expected.

The PW model velocity behavior with C0 = 5 m/s on a straight road for a period

of 7.8 s is shown in Figure 2.7. The maximum and minimum velocities observed are

1200 m/s and −10 m/s, respectively, which indicates that even with a small value of
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C0 the performance is unrealistic.

Figure 2.1: The PW model velocity behavior on a straight road with C0 = 25 m/s.

2.3.2 Example 2

Figures 2.8, 2.9, 2.10 and 2.11, 2.12, 2.13 show the performance of the improved

and PW models, respectively, on a circular road. The improved PW model density

behavior is given in Figure 2.8. From 75 to 100 m and then from 0 to 10 m, the traffic

density at t = 6 s is approximately uniform at 0.1. There is a cluster of vehicles

between 10 and 75 m. The density of this cluster varies from 0.08 at 27 m to 0.2 at

40 m. The improved PW model velocity behavior is shown in Figure 2.9. From 75

to 100 m and then from 0 to 10 m, at t = 6 s the velocity is approximately uniform

at 22.5 m/s. The velocity within the cluster varies from 20 to 23.3 m/s. This is

realistic traffic behavior which is within the maximum and minimum velocities. The
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Figure 2.2: The improved PW model velocity behavior on a straight road.

corresponding traffic flow behavior is shown in Figure 2.10. At t = 6 s, the traffic

between 75 to 100 m and then from 0 to 10 m has an approximately uniform flow of

2.25 veh/s. The flow within the cluster varies from 1.7 veh/s at 27 m to 4.2 veh/s

close to 40 m. As expected, the traffic flow is large where the density is high and vice

versa.

The PW model produces an oscillatory traffic flow on the circular road as shown in

Figures 2.11, 2.12 and 2.13. The corresponding density behavior is given in Figure 2.11

and indicates that the traffic is divided into nine small clusters of span approximately

10 m, which is very close. The minimum density of 0.01 occurs at 20 m on the road,

but the density is very small between the clusters. The PW model velocity behavior

is given in Figure 2.12. This shows that the velocity ranges from 1400 m/s to −120

m/s after 0.4 s, which is impossible. Further, at 6 s the average velocity is 64 m/s
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Figure 2.3: The improved PW model density behavior on a straight road.
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Figure 2.4: The PW model density behavior with on a straight road with C0 = 25
m/s.

which is higher than the maximum velocity of 25 m/s, and there are abrupt changes

in velocity. On average, within the clusters the velocity varies by 30 m/s within a

distance of 5 m, which is unrealistic. The worst case occurs near 20 m when the

velocity changes sharply from 23 m/s to 64 m/s and then falls to 14 m/s close to

25 m. The traffic flow behavior of the PW model is shown in Figure 2.13. The flow

within the clusters varies by 2.5 veh/s over a span of 10 m, which is very large given

the small distance. The results given show that the improved model has realistic

behavior even when there is an abrupt change in density. Conversely, the PW model

produces oscillatory traffic flow behavior under the same conditions.
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Figure 2.5: The PW model flow behavior on a straight road with C0 = 25 m/s.

2.4 Summary

It was observed that the PW model produces oscillatory traffic behavior at density

discontinuities. Further, the velocity oscillations go well above the maximum and

below the minimum, and changes in both the velocity and density are very rapid.

These unrealistic results are due to the PW model adjusting the traffic with a con-

stant velocity regardless of the transitions on the road. An improved PW model

was presented in which the traffic flow is dependent on the difference between the

equilibrium velocity and current velocity. This model performs much better at traffic

discontinuities. It eliminates the oscillatory behavior that occurs with the PW model

and limits the velocity to realistic values.
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Figure 2.6: The improved PW model flow behavior a straight road.
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Figure 2.7: The PW model velocity behavior on a straight road with C0 = 5 m/s.
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Figure 2.8: The improved PW model density behavior on a circular road.

Figure 2.9: The improved PW model velocity behavior on a circular road.
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Figure 2.10: The improved PW model flow behavior on a circular road.

Figure 2.11: The PW model density behavior on a circular road with C0 = 25 m/s.
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Figure 2.12: The PW model velocity behavior on a circular road with C0 = 25 m/s.

Figure 2.13: The PW model flow behavior on a circular road with C0 = 25 m/s.
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Chapter 3

Traffic Flow models based on Front

Traffic Stimuli

This chapter considers the time and distance required for vehicles to become aligned

with forward traffic conditions. The time for traffic flow adjustment is based on the

front traffic stimuli, i.e. the time needed to react and align to the forward traffic. The

time to react to this stimuli is known as the reaction time, and the subsequent time

required for traffic alignment is known as the transition time. Thus, the reaction

distance is the distance travelled during the reaction time, whereas the transition

distance is the distance covered during the transition time. The sum of the transition

and reaction times is known as the safe time. This is the time required for the safe

adjustment of velocity and can be considered the minimum time needed to avoid

accidents. The distance travelled during the safe time is known as the safe distance.

The safe distance includes the reaction and transition distances. The equilibrium

velocity distribution corresponds to a homogeneous traffic flow with no transitions.

This distribution is dependent on the traffic density as well as driver behavior and

road characteristics, and will result in a homogeneous traffic flow [4].

Parameters such as the safe distance and time, and the maximum density and ve-

locity, determine the transition behavior of the traffic. A simple, practical approach is

proposed to model traffic flow so that this behavior can be investigated with respect

to variations in these parameters. This will lead to better control of traffic behavior to

mitigate congestion, reduce pollution levels, and improve public safety. For example,

real-time information can be stored in roadside units for communication to nearby

vehicles to warn of congestion ahead and reduce the potential for accidents. Sugges-
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tions can be provided to drivers to adjust their vehicle speed and/or take alternative

routes.

In this chapter, a new model which includes the transition behavior of traffic

is proposed. This model is based on a variable safe distance and safe time which

improves the LWR model. The safe distance and time are based on the anticipated

velocity. With a larger safe distance, traffic will move slower. Further, the traffic

density distribution differs according to the safe distance, and has a greater variance

at lower safe distances. Changes in this distribution during traffic transitions depend

on the change in velocity required to achieve a homogeneous flow and maintain the

safe distance. Transitions occur because of traffic bottlenecks, ramps and traffic

lights which control traffic, and result in inhomogeneous traffic flow. Conversely,

if a transition does not occur, traffic moves according to the equilibrium velocity

distribution and has a homogeneous flow.

The rest of this chapter is organized as follows. Section 3.1 presents the LWR

model, and the new model is introduced in Section 3.2. In Section 3.3, the Godunov

technique is used to evaluate the performance of these models. A comparison of the

LWR and improved LWR models is presented in Section 3.4. Finally, some concluding

remarks are given in Section 3.5.

3.1 The LWR Model

The LWR model is the first macroscopic traffic model which was widely accepted. It

is based on the principle of conservation of matter and is given by [2, 41]

(ρ)t + (ρv(ρ))x = 0, (3.1)

where ρ is the density distribution and v(ρ) is the equilibrium velocity distribution.

The subscripts t and x denote partial derivative with respect to time and space,

respectively. The LWR model maintains vehicle conservation on the road, so it as-

sumes there are no exits or entrances. A smooth traffic density distribution on the

road is also assumed. Traffic following an equilibrium velocity distribution results in

a homogeneous traffic flow. This distribution is uniquely determined by the density

distribution. This distribution characterizes traffic behavior on a very long or infinite

length idealized road [34]. An idealized road does not have any disturbances to the

homogeneous flow of traffic. The problem with this model is that vehicles adjust their
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velocity in zero time which is unrealistic. As a consequence, the LWR model does

not consider the transition behavior of traffic. During a transition, the traffic density

distribution changes as traffic adjusts its velocity. This adjustment occurs during the

safe time period, and results in an inhomogeneous traffic flow, which is not possible

with the LWR model [55].

3.2 The Improved LWR Model

A new traffic model is now presented which incorporates the traffic behavior during

transitions. Traffic adapts to the equilibrium velocity distribution according to the

anticipated change in velocity. This change in velocity results in an acceleration given

by

a(ρ) =
v(ρ)2 − v2a

2ds
, (3.2)

where v(ρ) is the equilibrium velocity distribution, va is the average velocity of traffic

at the transition, and a(ρ) is the acceleration distribution as vehicles move through

the safe distance ds during the safe time ts. v(ρ) is the velocity distribution the

traffic tries to achieve when a transition occurs. For the LWR model, the velocity

distribution can be expressed as

v(ρ) = a(ρ)ts. (3.3)

Substituting (3.3) in (3.1) gives

(ρ)t + (ρa(ρ)ts)x = 0, (3.4)

Now substituting (3.2) in (3.4) results in

(ρ)t +

(

ρ

(

(v(ρ)2 − v2a)

2ds

)

ts

)

x

= 0. (3.5)

Substituting the equilibrium velocity distribution (1.1) into (3.5) gives

(ρ)t +

(

ρ

(

(

(vm(1−
ρ

ρm
)

)2

− v2a

)

ts
2ds

)

x

= 0. (3.6)
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The safe velocity is vs =
ds
ts
, so that (3.6) can be written as

(ρ)t +

((

(

(vm(1−
ρ

ρm
)

)2

− v2a

)

ρ

2vs

)

x

= 0. (3.7)

Define the traffic flow during a transition as

q(ρ) =

(

(

(vm(1−
ρ

ρm
)

)2

− v2a

)

ρ

2vs
, (3.8)

which is a function of the safe velocity. For a smaller safe velocity, the transition

will be faster and vice versa. That is, vehicles maintaining a large safe distance will

have slow transitions and less interaction between vehicles, whereas a smaller safe

distance results in fast transitions and high interaction between vehicles. If there is

no transition, va can be considered to be zero so the traffic flow (3.8) becomes

q(ρ) =

(

(vm(1−
ρ

ρm
)

)2
ρ

2vs
. (3.9)

This shows that traffic flow at the equilibrium velocity distribution depends on the

safe velocity, which is not accounted for in the LWR model. The traffic flow reduces

to the LWR model flow if the safe velocity is half the equilibrium velocity distribution

as substituting vs(ρ) =
v(ρ)
2

in (3.9) gives

q(ρ) =

(

vm(1−
ρ

ρm
)

)

ρ, (3.10)

and using (1.1) results in

q(ρ) = ρv(ρ), (3.11)

so that using (3.10) and (3.11) with (3.7) gives the LWR model

(ρ)t + (ρv(ρ))x = 0. (3.12)

Hence, the improved LWR model can account for both homogeneous and inhomoge-

neous traffic flows.
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3.3 Performance Evaluation

Consider a road divided into N equidistant segments and M equal duration time

steps. The total length is xN so a segment has length h = xN/N , and the total time

duration is tM so a time step is k = tM/M . For the nth road segment denoted xn−h

2

to xn+h

2

over time tm to tm+1, the average traffic density ρ and flow q(ρ) are evaluated

using the technique developed by Godunov [46]. The number of vehicles present in

the nth segment at time t is given by

ln(t) =

∫ x
n+h

2

x
n−

h
2

ρ(x, t)dx, (3.13)

and the traffic flow through this segment at time t is

∆ln(t) = q(ρ(xn−h

2

, t))− q(ρ(xn+h

2

, t)). (3.14)

The traffic flow through the nth segment during the time interval (tm, tm+1) is then

ln(tm + 1)− ln(tm) =

∫ tm+1

tm

∆ln(t)dt =

∫ tm+1

tm

(

q(ρ(xn−h

2

, t))− q(ρ(xn+h

2

, t))
)

dt.

(3.15)

Using (3.13), (3.15) takes the form

∫ x
n+h

2

x
n−

h
2

ρ(x, tm+1)dx−
∫ x

n+h
2

x
n−

h
2

ρ(x, tm)dx =

∫ tm+1

tm

(

q(ρ(xn−h

2

, t))− q(ρ(xn+h

2

, t))
)

dt.

(3.16)

The average density at time step m for the nth segment is

ρ(n,m) =
1

h

∫ xn+
1

2

xn−
1

2

ρ(x, tm)dx, (3.17)

and the corresponding flow is

q(n,m) =
1

k

∫ tm+1

tm

q(ρ(xn−h

2

, t))dt. (3.18)

Substituting (3.17) and (3.18) into (3.16) gives

ρ(n,m+ 1)− ρ(n,m) =
k

h
(q(n,m)− q(n+ 1,m)) , (3.19)
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For the LWR model, q(ρ) = ρv(ρ), and for the improved LWR model q(ρ) is given

by (3.8). The traffic flow has initial density distribution ρ0(x) at t = 0, and this is

used to determine the initial average densities at t = 0.

For the time period (tm, tm+1) set

ρ(x, t) = ρ(n,m) for xn− 1

2
h < x < xn+ 1

2
h (3.20)

To account for both increasing and decreasing flows q(ρ(x, t)) is approximated as

q(ρ(x, t)) =

{

q (min (ρ(n− 1,m), ρ(n,m))) , if ρ(n− 1,m) ≤ ρ(n,m)

q (max (ρ(n,m), ρ(n− 1,m))) , if ρ(n− 1,m) > ρ(n,m).
(3.21)

The time step should be chosen such that the maximum distance the traffic covers

during this time is not greater than h

|q′(ρ)|max × k < h, (3.22)

where |q′(ρ)|max is the maximum rate of change at t = 0 given by

max

(

q(∆ρ)

∆ρ

)

= max

(

q(ρ(n, 0))− q(ρ(n− 1, 0)

∆ρ

)

. (3.23)

The time step k is then set to

k = 0.5× h

|q′(ρ)|max

, (3.24)

which ensures that the solution converges [46].

3.4 Simulation Results

The simulation parameters are summarized in Table 3.1. Traffic is observed over a

period of three seconds while traversing a road from −20 m to 200 m. The road

begins at −20 m so that the traffic can begin uniformly distributed about zero, and

the length of road considered is xN = 220 m with N = 450 so that h = 0.489 m. The

maximum velocity is vm = 30 m/s and the maximum normalized density is 0.2, i.e.,

20% of the maximum density a length of road can take. The initial traffic density

distribution is ρ0(x) = 0.09 exp

(

−x
2

50

)

and is the same for both the LWR and improved
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LWR models. The initial density interval ∆ρ is set to 0.0004 to evaluate |q′(ρ)|max,

and this is used in (3.24) to determine k. The boundary conditions are such that

vehicles can move beyond the 200 m point. The traffic density distribution evolves

with time over the length of road according to the technique presented in Section 3.3.

Transitions are observed from average transition velocities of va = 0 and 10 m/s to

the equilibrium velocity distribution (1.1) having vm = 30 m/s.

Figure 3.1 shows the traffic density evolution with the LWR model at 0 s, 1.5 s

and 3 s. Figures 3.2, 3.3 and 3.4 show the corresponding results for the improved

LWR model. The initial density is shown in blue. The LWR model can only char-

acterize traffic moving with the equilibrium velocity distribution, as it ignores the

inhomogeneous traffic flow. Thus, Figure 3.1 shows the traffic flow at the equilibrium

velocity with a maximum velocity of 30 m/s.

Figures 3.2 and 3.3 show the improved LWR model for safe velocities of 20 m/s

and 10 m/s, respectively, with va = 10 m/s. The safe distances for these velocities are

assumed to be 20 m and 10 m, respectively. During the transitions, traffic adapts its

velocity from va = 10 m/s to the equilibrium velocity distribution having a maximum

velocity of 30 m/s. The results in these figures show that traffic moves slower with a

20 m/s safe velocity compared to a 10 m/s safe velocity. At 1.5 s, the traffic density

in Fig. 3.2 spans from 23 to 83 m, whereas in Fig. 3.3 it spans from 65 to 155

m. Thus the traffic density has a greater variance at lower safe velocities, and this

velocity has a significant effect on traffic behaviour. This variance is greater than

with the LWR model, as shown in Figure 3.1. The average distance covered is higher

at lower safe velocities as vehicles maintain small safe distance. Figure 3.4 shows the

improved LWR model behavior with traffic adapting from a velocity of 0 m/s to the

equilibrium velocity distribution having a maximum velocity of 30 m/s with a safe

velocity of 20 m/s. There is no significant difference between Figures 3.2 and 3.4,

which shows that the average transition velocity has little effect on traffic behaviour.

3.5 Summary

It has been observed that the LWR model cannot accurately model vehicle traffic as it

only considers homogeneous flow conditions [44]. Thus it does not capture variations

in the flow of traffic, and does not incorporate the safe distance and time. It also does

not account for transitions when abrupt changes in the density occur. To overcome
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Table 3.1: Simulation Parameters

Name Parameter Value
average transition velocity va 0, 10 m/s
equilibrium velocity distribution v(ρ) Greenshields equation
maximum velocity vm 30 m/s

initial density distribution ρ0(x) 0.09 exp

(

−x
2

50

)

length of road x 220 m
number of road steps N 450
segment length h 220/450 = 0.489 m
safe velocity vs 10, 20 m/s
normalized maximum density ρm 0.2
initial density interval ∆ρ 0.0004
time step for the LWR model k 0.0067 s
time step for the improved LWR model, k 0.0102 s
va = 10 m/s, vs = 20 m/s
time step for the improved LWR model, k 0.0091 s
va = 0 m/s, vs = 20 m/s
time step for the improved LWR model, k 0.0051 s
va = 10 m/s, vs = 10 m/s
Total simulation time tM 3 s
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Figure 3.1: Traffic behavior with the LWR model with vm = 30 m/s.
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Figure 3.2: The improved LWR model behavior with ds = 20 m, vs = 20 m/s and
va = 10 m/s.
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Figure 3.3: The improved LWR model behavior with ds = 10 m, vs = 10 m/s and
va = 10 m/s.
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Figure 3.4: The improved LWR model behavior with ds = 20 m, vs = 20 m/s and
va = 0 m/s.
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these drawbacks, an improved LWR model was developed which incorporates changes

in the velocity behavior during traffic transitions based on the safe time and distance.

Performance results were presented which show that this model provides a more

realistic characterization of traffic behaviour. Therefore it will provide more realistic

results which can be used to reduce fuel consumption and improve the quality of air.
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Chapter 4

Traffic Flow Model based on

Alignment

This chapter considers the behavior of vehicles as they align to forward traffic con-

ditions. The time for traffic alignment is based on the front traffic stimuli, i.e. the

time to react and align to the forward traffic. The time required to react is known

as the reaction time, and the time for traffic alignment is known as the transition

time. The reaction distance is the distance travelled during the reaction time, while

the transition distance is the distance covered during the transition time. The sum of

the transition and reaction times is known as the safe time. This is the time required

for the safe adjustment of velocity and can be considered the minimum time needed

to avoid accidents. The distance travelled during the safe time is known as the safe

distance.

Drivers adjust their velocity when a change in traffic flow is observed to achieve

the equilibrium velocity distribution. This distribution depends on the traffic density

as well as driver behavior and road characteristics, and will result in a homogeneous

traffic flow [4]. The traffic flow will evolve into clusters with a large safe distance and

small safe time. Conversely, a small safe distance and large safe time will produce a

more uniform flow. The goal of this chapter is to develop a simple, realistic model

to characterize the traffic flow. This will lead to better control of traffic behavior to

mitigate congestion, reduce pollution levels, and improve public safety.

Khan and Gulliver [50] improved the PWmodel using the fact that driver anticipa-

tion is based on the velocity of the forward traffic, so that traffic behavior depends on

the velocity during transitions. It was shown that this model provides more realistic
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traffic flow and density. The sensitivity of traffic is the rate at which alignment occurs.

The limitation of the Khan-Gulliver (KG) model is that this sensitivity depends only

on the relaxation time τ . For high velocities, τ is small, so traffic alignment can occur

too quickly, whereas with low velocities, τ is large so alignment can be very slow. As

a consequence, this model does not have sufficient flexibility to properly characterize

traffic behavior.

In this chapter, an improved KG model is proposed to provide more realistic traffic

behavior ranging from vehicle clusters to a uniform flow. Transitions in the flow occur

when vehicles enter or leave at connecting roads, or when there are obstructions or

bottlenecks on the road. The resulting alignment is affected by the safe velocity and

the flow behaviour. The safe velocity is the ratio of safe distance to safe time

vs =
ds
ts
.

The traffic density distribution has a greater variance at lower safe velocities [49],

and changes in this distribution during alignment depend on the velocity adjustments

required to adapt to the equilibrium velocity distribution. In the proposed model, a

parameter is introduced to regulate traffic flow behaviour so these adjustments are

appropriate. With a large flow regulation value, the flow evolves into a large number

of small clusters. Conversely, the traffic flow is more uniform with a small value. This

value can be chosen based on real traffic data to accurately model traffic behavior.

The effect of this parameter is examined in Section 4.3.

The remainder of this chapter is organized as follows. Section 4.1 presents the

KG and the improved KG models. In Section 4.2, the well-known Roe decomposition

technique is used to implement these models, and performance results are presented

for a circular road in Section 4.3. Finally, some concluding remarks are given in

Section 4.4.

4.1 Traffic Flow Models

The KG model [50] was developed to characterize traffic flow behavior according to

forward velocity conditions. The KG model in conservation form is given by

ρt + (ρv)x = 0 (4.1)
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(ρv)t +

(

(ρv)2

ρ
+

(

v2(ρ)− v2

2dtr

)

ρ

)

x

= ρ

(

v(ρ)− v

τ

)

, (4.2)

where the subscripts t and x denote the temporal and spatial derivatives, respectively.

ρ and v are the traffic density and average velocity, respectively, so that ρv is the flow.

v(ρ) is the equilibrium velocity distribution and dtr is the transition distance. A large

average velocity results in a small relaxation time and thus the alignment can be very

quick and produce unrealistic behaviour.

The source term in (4.2) is

ρ

(

v(ρ)− v

τ

)

, (4.3)

which indicates that traffic alignment occurs according to the difference between the

average velocity and the equilibrium velocity distribution. In reality, alignment is

faster at higher velocities, so it should not be a function of only this difference. After

alignment, the source term is zero (v = v(ρ)), and the traffic flow is smooth. The

sensitivity of this term is given by

ζ1 =
1

τ
, (4.4)

and this determines how quickly alignment will occur given the other parameters in

(4.3). Thus it can have a significant effect on traffic behavior. However, ζ1 only

depends on the relaxation time τ , which may not be sufficient to produce appropriate

traffic behavior.

The following traffic model based on the forward traffic stimuli was presented in

[49]

ρt +

(

ρ

(

v(ρ)2 − v2

2vs

))

x

= 0. (4.5)

This model has been used to characterize traffic behavior during transitions as well as

when the flow is smooth [49]. The RHS of (4.5) is zero because the traffic is considered

to be on a long infinite road with no transitions due to the egress or ingress of vehicles

to the flow. The anticipation term of this model

ρ

(

v2(ρ)− v2

2vs

)

, (4.6)

characterizes the driver presumption of changes in the forward traffic. With this

model, traffic alignment is a quadratic function of velocity. Further, the sensitivity
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of (4.6) is

ζ2 =
1

2vs
, (4.7)

so it is also a function of the safe distance and safe time, and alignment occurs

according to the inverse of the safe velocity.

In this chapter, an improved KG model is proposed for the egress and ingress to

the traffic flow, by characterizing the driver response using (4.6). If the equilibrium

velocity v(ρ) is greater than the average velocity v, acceleration occurs and alignment

will occur at a velocity greater than v. Conversely, if v(ρ) is smaller than v, decel-

eration occurs, and alignment will occur at a velocity smaller than v. This can be

characterized by the numerator of (4.6). Further, alignment depends on the physio-

logical and psychological response of the drivers. This behavior can be characterized

using the denominator of (4.6). To provide flexibility in the proposed model, the

number 2 in (4.6) is replaced with a flow regulation value b. A small value of b will

produce a more uniform flow, while a large value will result in clustered traffic. The

new source term is then

ρ

(

v2(ρ)− v2

bds
ts

)

. (4.8)

The safe distance consists of the reaction distance dr and transition distance dtr so

that

ζ3 =
1

b
(

dr+dtr
ts

) . (4.9)

The psychological response of a driver is characterized by the transition distance, and

the physiological response by the reaction distance. A tamed driver responds slowly

and takes more time to perceive and process forward traffic conditions. Thus, they

will have large reaction and transition distances to align to the traffic. An extreme

example of a tamed driver is a person who is intoxicated and so has a very slow

response. For a tamed or distracted driver b should be large. Conversely, an excited

or aggressive driver will have small reaction and transition distances, so b should be

small.

Replacing the source term in the KG model (Improved PW model in Chapter 2)

with (4.8) gives the new model

(ρv)t +

(

(ρv)2

ρ
+

(

v2(ρ)− v2

2dtr

)

ρ

)

x

= ρ

(

v2(ρ)− v2

bvs

)

. (4.10)
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Note that (4.1) is not changed.

4.2 The Decomposition of Traffic Flow Models

To evaluate the performance, Roe decomposition technique is used to implement the

KG and improved KG models. This technique is presented in section 1.2.

The Jacobian matrices of both the models are found with the help of Roe’s tech-

nique. These matrices, average velocity and density are found to be the same as in

section 2.2.

In the next section, performance results are presented.

4.3 Performance Results

The performance of the proposed model is evaluated in this section and compared

with the KG model over a circular road of length xM = 100 m. A discontinuous

density distribution ρ0 at t = 0 with periodic boundary conditions is employed. ρ0

is shown in blue in the figures. Greenshields equilibrium velocity distribution given

in (1.1) is used with vm = 34 m/s and maximum density ρm = 1. The safe distance

is 28 m, the safe time is ts = 1.4 s, and dtr is 20 m. For the KG model, τ = 1 s.

The total simulation time is 30 s. Based on δx = 1 m, the time step is chosen as

δt = 0.01 s to satisfy the CFL condition [46]. The number of time steps and road

steps are 3000 and 100, respectively, for both the KG and improved KG models. The

flow regulation parameters considered for the improved model are b = 1 and 2. The

simulation parameters are summarized in Table 4.1.

Figure 4.1 presents the normalized traffic density with the KG model at four

different time instants. This shows that the traffic evolves into two clusters of vehicles.

At 5 s the density behavior is slightly oscillatory. However, at 15 s the traffic density

beyond 50 m has an almost uniform level of 0.09, and there are two clusters of vehicles

between 0 and 50 m. The traffic density of these clusters ranges from 0.1 to 0.21.

Both the clusters span a distance of approximately 20 m. At 30 s, the traffic density

between 0 and 40 m has an almost uniform density of 0.09, while beyond 40 m there

are two clusters. The clusters still span a distance of about 20 m, so they have just

moved over time. The first cluster has a maximum density of 0.25 at 50 m, and the

second a maximum density 0.2 at 78 m.
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Table 4.1: Simulation Parameters

Name Parameter Value
road step δx 1 m
equilibrium velocity v(ρ) Greenshields velocity distribution
maximum velocity vm 34 m/s
road step δx 1 m
time step δt 0.01 s
safe distance ds 28 m
transition distance dtr 20 m
safe time ts 1.4 s
safe velocity vs

28
1.4

= 20 m/s
normalized maximum density ρm 1
total simulation time tM 30 s
flow regulation parameter b 1,2
relaxation time constant τ 1 s
number of time steps M 3000
number of road steps N 100
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Figure 4.2 presents the normalized traffic density with the improved KG model

and b = 1 s at four different time instants. This shows that with a small value of b,

the traffic becomes quite smooth over time. At 5 s, the variation in traffic density

ranges from 0.07 to 0.17, while at 15 s this variation is 0.1 to 0.14, and at 30 s the

range is only 0.12 to 0.13.

Figure 4.3 presents the normalized traffic density behavior with the improved KG

model and b = 2 s at four different time instants. There are larger variations in the

density than with b = 1, but smaller than with the KG model. The traffic evolves

into two clusters with a smooth density between them. The variation in density is

between 0.09 and 0.16 at 15 s, and between 0.1 and 0.15 at 30 s.

Figure 4.4 presents the traffic density behavior with the KG model over a time

span of 30 s (3000 time steps) for 100 road steps. This shows that the traffic evolves

into clusters over time. Figure 4.5 presents the density behavior with the proposed

model and b = 1. In this case, the traffic becomes more uniform over time. The

traffic density behavior for the proposed model with b = 2 is given in Figure 4.6.

The density variations are smaller than with the KG model, but there are still two

clusters. Further, they are larger than with the improved KG model and b = 1.

The traffic velocity behavior with the KG model is given in Figure 4.7 at four

different time instants. The similarity with the density shown in Figure 4.1 indicates

that the velocity is density dependent, with greater velocities observed at lower densi-

ties. The greatest fluctuations in velocity occur at 5 s. At 15 s, the traffic has a nearly

uniform velocity beyond 50 m of 31 m/s. There are two clusters of vehicles from 0 to

50 m. The velocity in these clusters varies from 27 m/s to 30.2 m/s. At 30 s, between

0 and 40 m the traffic has a near uniform velocity of 31 m/s, and the two clusters

are located beyond 40 m. The first cluster is between 40 and 70 m and has a velocity

which varies from 26 to 30.2 m/s, while in the second cluster is located between 70

and 90 m and has a velocity which varies from 28 to 30.2 m/s. Comparing the traffic

at 15 and 30 s, the velocity in the second cluster increases by 1 m/s, whereas the

velocity of the first cluster decreases by 2 m/s.

Figure 4.8 presents the velocity behavior at four different time instants for the

improved KG model with b = 1. This corresponds to the density shown in Figure 4.2.

At 5 s, the variations in velocity are the greatest, ranging from 29 to 31 m/s. At 15 s,

this variation is 29.5 to 31.5 m/s, while at 30 s, it is less than 1 m/s. These variations

are smaller than with the KG model. Figure 4.9 presents the velocity behavior at

four different time instants for the improved KG model with b = 2. This corresponds
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to the density shown in Figure 4.3. The fluctuations in velocity are greatest at 5 s,

with a range of 28 to 31 m/s, At 15 s, the range is 29 to 30.5 m/s, while at 30 s it is

only 29 to 30.2 m/s. Thus the velocity fluctuations are larger than with b = 1, but

smaller than with KG model.

The velocity behavior on the road over a time span of 30 s with the KG model

and the improved KG model with b = 1 and 2 is given in Figures 4.10, 4.11, and

4.12, respectively. These figures also illustrate that the fluctuations in velocity are

density dependent, but the variations in the velocity reduce over time in all cases.

However, the velocity is more oscillatory with the KG model than with the improved

KG model, particularly with b = 1.

The traffic flow behavior with the KG model is presented in Figure 4.13 at four

different time instants. The change in flow follows the changes in density and velocity

as it is the product of these two parameters. At 5 s, the flow is more oscillatory,

whereas at 15 s, the flow evolves into two clusters between 0 and 50 m. The flow

in the first cluster varies from 6 veh/s to 3.5 veh/s, while in the second cluster it

varies from 6 veh/s to 2.8 veh/s. The flow beyond 50 m aligns to a uniform level of

2.8 veh/s. At 30 s, the two clusters have moved beyond 40 m. The flow in the first

cluster now varies from 2.8 to 7 veh/s, while in the second cluster it varies from 3 to

5.2 veh/s. The minimum flow between the clusters is 3 veh/s at 65 m. In the first 40

m, the flow has an approximately uniform level of 2.8 veh/s.

Figure 4.14 presents the traffic flow behavior at four different time instants with

the improved KG model and b = 1. At 5 s, the flow varies from 2.5 to 4.5 veh/s.

The maximum and minimum flows occur at 50 m and 40 m, respectively. At 15 s,

the flow varies from 3.2 to 4.2 veh/s, which is less than at 5 s. The maximum and

minimum flows now occur at 70 m and close to 60 m, respectively. At 30 s, the flow

is only in the range 3.5 to 4 veh/s, and the maximum flow occurs at 40 m. Figure

4.15 presents the corresponding traffic flow behavior with the proposed model and

b = 2. The behavior is more oscillatory at 5 s, and the flow varies from 2.5 to 6 veh/s,

which is greater than with b = 1. At 15 s, the flow varies from 3 to 4.5 veh/s, and

it is almost the same at 30 s. However, the locations of the maximum and minimum

traffic flows are different.

Traffic flow over a time span of 30 s with the KG model and the improved KG

model with b = 1 and 2 is given in Figures 4.16, 4.17 and 4.18, respectively. The

flow variations reduce with time in all cases. These figures demonstrate that the flow

is more oscillatory with the KG model, while the variations are lowest (the flow is
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more uniform), with the improved KG model and b = 1. With b = 2, there are small

oscillations in the flow which are smaller than with the KG model.

The results in this section show that the flow regulation parameter b in the pro-

posed model can be used to adjust traffic oscillations and cluster behavior. For smaller

values of b, traffic becomes more uniform. Thus, unrealistic oscillations can be elimi-

nated with this parameter, and cluster behavior can be properly characterized.

4.4 Summary

In this chapter, improved KG model was proposed to characterize the physiological

and psychological response of drivers to changes in the traffic flow. For a slow re-

sponse, the traffic becomes clustered, while for a fast response the traffic flow is more

uniform. A regulation parameter was introduced to further refine the driver response

to forward conditions. This allows for a more realistic traffic characterization than

with other models in the literature, The use of this improved KG model will lead to

better results which can be used to reduce fuel consumption and pollution.
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Figure 4.1: The KG model density behavior with τ = 1 s.
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Figure 4.2: The improved KG model density behavior with aggresive drivers having
b = 1.
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Figure 4.3: The improved KG model density behavior with slow drivers having b = 2.
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Figure 4.4: The KG model density behavior with τ = 1 s.
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Figure 4.5: The improved KG model density behavior with aggresive drivers having
b = 1.
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Figure 4.6: The improved KG model density behavior with slow drivers having b = 2.
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Figure 4.7: The KG model velocity behavior with τ = 1 s.
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Figure 4.8: The improved KG model velocity behavior with aggressive drivers having
b = 1.
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Figure 4.9: The improved KG model velocity behavior with slow drivers having b = 2.
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Figure 4.10: The KG model velocity behavior with τ = 1 s.
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Figure 4.11: The improved KG model velocity behavior with aggressive drivers having
b = 1.
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Figure 4.12: The improved KG model velocity behavior with slow drivers having
b = 2.
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Figure 4.13: The KG model flow with τ = 1 s.
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Figure 4.14: The improved KG model flow with aggressive drivers having b = 1.
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Figure 4.15: The improved KG model flow with slow drivers having b = 2.
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Figure 4.16: The KG model flow with τ = 1 s.



72

Figure 4.17: The improved KG model flow with aggressive drivers having b = 1.
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Figure 4.18: The improved KG model flow behavior with slow drivers having b = 2.
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Chapter 5

Traffic Flow Model based on

Driver Response

5.1 Introduction

A new macroscopic flow model is proposed to accurately predict traffic behavior. This

model includes the characterization of traffic density and velocity during alignment

with forward conditions. This alignment should be based on the physiological and

psychological response of the drivers. Further, for large traffic densities traffic moves

at smaller velocities, whereas traffic moves faster at low traffic densities. The aver-

age distance between vehicles is proportional to the traffic density and so there will

be significant interaction between vehicles at large densities, which indicates conges-

tion. Driver response is typically fast during congestion because conditions are more

predictable and distances between vehicles are small. Conversely, traffic with a low

density is typically free flow and thus response is small. However, driver response can

deviate from typical behavior and be slow or aggressive.

In this chapter, a new macroscopic traffic flow model is proposed based on analo-

gies developed from the ideal gas law. This law specifies that the density of gas

changes with temperature for a given pressure. For traffic, the density changes with

velocity. When there is congestion, the traffic density is high and the velocities are

small, while during free flow, the density is low and the velocities can be high. Anal-

ogous to the specific gas constant, a traffic constant is introduced to characterize the

driver response. These conditions include the traffic headway, safe time and velocity.

Headway is the distance between the centers of adjacent vehicles and is a function of
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traffic density. The interaction between vehicles is large when the headway is small

(and the density is high). The minimum time required for traffic alignment to avoid

accidents is known as the safe time and is related to the velocity. The traffic flow

model proposed in this paper has an anticipation term which is based on this traffic

constant. Conversely, the PW model has an anticipation term based on a constant

driver response for all traffic conditions.

Driver response includes both physiological and psychological behavior. The phys-

iological behavior includes the time taken to perceive and process traffic situations

and the resulting actions. The psychological behavior is the response to a situation

based on awareness and attitude. Traffic can be characterized more realistically if

the model incorporates both types of behavior. Therefore, in this chapter driver

perception, awareness, reaction and attitude are considered.

Traffic model performance is examined on a circular road with a transition caused

by an inactive bottleneck. An inactive bottleneck is congestion resulting from a higher

density ahead. It is shown that the PW model can produce unrealistic results in this

situation because it cannot adequately characterize driver behavior. Conversely, the

proposed model is shown to provide realistic results.

The rest of the chapter is organized as follows. Section 5.2 presents the proposed

model. In Section 5.3 Roe’s decomposition technique is used to characterize the

proposed and PW models, and the traffic performance using this method is presented

in Section 5.4. Finally, some concluding remarks are given in Section 5.5.

5.2 The Proposed Model

In this section, analogies between gas and traffic behavior are considered in developing

a new traffic model. The ideal gas law is given by

pV = nRT, (5.1)

where p is pressure, V is volume, n is the number of moles of gas, R is the ideal gas

constant, and T is temperature. The number of moles is

n =
m

z
, (5.2)
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where m is the mass and z is the molar mass. Substituting (5.2) in (5.1) gives

p =
m

V

R

z
T. (5.3)

The density is ρ = m
V

and the specific gas constant is Rs =
R
z
, so that

p = ρRsT, (5.4)

which shows that pressure is proportional to density.

Traffic pressure can be considered as the desire to achieve the equilibrium velocity.

The traffic pressure is high in congestion due to the high density. This effect is similar

to the behavior of gas given by (5.4). Further, the average traffic velocity, v, is

analogous to gas temperature, as an increase in velocity results in a greater pressure.

The specific gas constant relates pressure, density and temperature. In this paper,

a traffic constant denoted by Ld is introduced which relates traffic pressure, density

and velocity based on the driver response and so is a function of their physiological

and psychological behavior. The physiological response of a driver includes driver

perception of and reaction to traffic conditions ahead, whereas the psychological re-

sponse includes driver awareness and attitude. Thus, the traffic constant incorporates

driver perception, attitude, awareness and reaction, and analogous to (5.4) we have

p = ρLdv, (5.5)

The time taken by a driver to perceive and process traffic conditions is collectively

called the perception time, and is a function of density, so it is denoted by τ(ρ). In

congested traffic, the perception time is large and the alignment of the vehicles flow

is slow. Conversely, during free flow perception time is small and vehicle alignment is

fast. Driver attitude can be characterized as the ratio of the safe time and perception

time

β =
τs

τ(ρ)
, (5.6)

where τs is the safe time. Driver behavior is considered normal if the perception time

is similar to the safe time. If the perception time is larger than the safe time, the

behavior can be considered slow (such as with an intoxicated driver). Conversely, if

the perception time is much smaller than the safe time, the driver behavior can be
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considered to be aggressive. Thus, for a normal driver

β ≈ 1,

for a slow driver

β ≪ 1,

and for an aggressive driver

β ≫ 1.

The safe time τs is inversely proportional to the spatial rate of change in velocity

vx (acceleration), and so can be expressed as

τs =
1

vx
, (5.7)

where the subscript x denotes the derivative with respect to distance. Thus the lower

the acceleration or deceleration, the greater the safe time.

The perception time τ(ρ) is small during free flow as vehicles align quickly, and is

large during congestion. Thus, the perception time due to fluctuations in the density

can be characterized as

τ(ρ) =
1

v(ρ)ρ
(5.8)

where v(ρ) denotes the equilibrium velocity distribution and the subscript ρ denote

the derivative with respect to density. Substituting (5.7) and (5.8) in (5.6) gives

β =
v(ρ)ρ
vx

. (5.9)

In the literature, driver reaction has been characterized as a constant [1], and also

as a linear [55] or exponential function of the density. While using a constant results

in a simple model, it may not provide realistic results. With a linear relationship, the

response is too similar with high and low densities. Conversely, with an exponential

relationship, significant acceleration and deceleration can occur with high densities,

and very low acceleration and deceleration at low densities, which can produce unre-

alistic behavior. Thus in this chapter, the driver reaction is characterized by

ρ2. (5.10)
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This square law relationship provides a smooth change in traffic flow with variations

in density, which is desirable.

Driver awareness increases with greater interaction between vehicles, and so can

be characterized by the traffic headway S. The headway is small during congestion,

which increases the acceleration and deceleration, and thus results in a more discon-

tinuous traffic flow. With an increase in traffic density, driver awareness increases

as the surrounding vehicles must be observed more carefully. Conversely, free flow

traffic has a low density, so the headway is large and awareness tends to be low. The

traffic headway S can then be expressed as

S =
1

ρ
. (5.11)

Combining (5.9), (5.10), and (5.11), the traffic constant which characterizes driver

response is given by

Ld =
v(ρ)ρρ

2
x

vxρ
. (5.12)

Several models have been proposed for the equilibrium velocity distribution v(ρ) [32].

The Greenshields model [60] is commonly employed [33] and is given by

v(ρ) = vm

(

1− ρ

ρm

)

, (5.13)

where ρm and ρ are the maximum and average traffic densities, respectively, and vm

is the maximum velocity on the road. Therefore, (5.13) is used here to evaluate the

traffic models.

From (5.5), the rate of change in pressure with respect to density is

dp

dρ
= Ldv. (5.14)

The spatial change in pressure is a function of the temporal change in velocity [31],

so that
dp

dx
= −ρ

dv

dt
. (5.15)

Further
dp

dt

dt

dx
= −ρ

dv

dt
, (5.16)
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and substituting v = dx
dt

gives
dp

dt
= −vρ

dv

dt
. (5.17)

The temporal change in pressure can also be expressed as

dp

dt
=

dp

dρ

dρ

dt
, (5.18)

and substituting (5.14) and (5.17) gives

− vρ
dv

dt
= Ldv

dρ

dt
. (5.19)

The rate of change in ρ and v with distance and time is given by

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x

dx

dt
and

dv

dt
=

∂v

∂t
+

∂v

∂x

dx

dt
, (5.20)

respectively, which can be expressed as

dρ

dt
=

∂ρ

∂t
+ v

∂ρ

∂x
and

dv

dt
=

∂v

∂t
+ v

∂v

∂x
. (5.21)

Then substituting dρ

dt
and dv

dt
from (5.21) in (5.19) gives

− ρ (vt + vvx) = Ld (ρt + vρx) , (5.22)

where the subscripts t and x denote the derivatives with respect to time and distance,

respectively. Adding and subtracting Ldρvx to the RHS of (5.22) gives

− ρ (vt + vvx) = Ld (ρt + vρx + ρvx − ρvx) , (5.23)

and substituting

(vρ)x = vρx + ρvx,

results in

− ρ (vt + vvx) = Ld (ρt + (vρ)x − ρvx) . (5.24)

The conservation of vehicles on the road is given by [2]

ρt + (ρv)x = 0, (5.25)
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which models the smooth flow of traffic on a long idealized road. Substituting (5.25)

in the RHS of (5.24) gives

− ρ (vt + vvx) = Ld (0− ρvx) , (5.26)

which can be simplified to

vt + (v − Ld) vx = 0. (5.27)

This represents the homogeneous traffic flow as there are no transitions in the flow.

The transitions in the flow are caused by the traffic control devices or egress and

ingress to the flow. To include the effect of transitions which result in acceleration or

deceleration in the flow, a relaxation term is added to the RHS of (5.27). According

to the kinematic equation of motion, acceleration a(ρ) is given by

a(ρ) =
v(ρ)− v

τ
, (5.28)

where τ is the relaxation time. Considering traffic transitions, (5.27) can be expressed

as

vt + (v − Ld) vx =
v(ρ)− v

τ
. (5.29)

Multiplying by ρ, the traffic flow is obtained as

ρvt + ρ (v − Ld) vx = ρ
v(ρ)− v

τ
. (5.30)

Then, the proposed model for traffic flow from (5.25) and (5.30) is

ρt + (ρv)x = 0

ρvt + ρvvx − ρLdvx = ρ
v(ρ)− v

τ
,

(5.31)

where

−ρLdvx,

is the anticipation term. This term includes the traffic constant Ld which characterizes

the driver response.
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Table 5.1: Traffic Model Comparison

Term PW model Proposed model
anticipation term ρC2

0ρx −ρLdvx
relaxation term ρv(ρ)−v

τ
ρv(ρ)−v

τ

The PW model [1], [7] is given by

ρt + (ρv)x = 0

ρvt + ρvvx + ρC2
0ρx = ρ

v(ρ)− v

τ
,

(5.32)

where C0 is the anticipation constant which characterizes driver response. According

to this model, driver response does not depend on the traffic conditions and is a

constant. The relaxation term of the proposed model is the same as that in the PW

model, as shown in Table 5.1.

5.3 The Decomposition of Traffic Flow Models

In order to evaluate the performance of the PW and proposed models, they are

decomposed using Roe’s technique to approximate the macroscopic traffic flow. This

approach is described in Section 1.2.

5.3.1 Jacobian Matrix

The Jacobian matrix A(G) is now obtained. Multiplying the first equation in (5.31)

with v, the proposed model is

vρt + v(ρv)x = 0

ρvt + ρvvx − ρLdvx = ρ
v(ρ)− v

τ
,

(5.33)

Combining these equations gives

vρt + ρvt + v(ρv)x + ρvvx − Ldρvx = ρ

(

v(ρ)− v

τ

)

, (5.34)
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As

(ρv)t = vρt + ρvt,

and

(ρvv)x = v(ρv)x + ρvvx,

(5.34) becomes

(ρv)t + (ρvv)x − Ldρvx = ρ

(

v(ρ)− v

τ

)

, (5.35)

Substituting the traffic constant relation from (5.12) in (5.35) gives

(ρv)t + (ρvv)x − v(ρ)ρρ
2
x = ρ

(

v(ρ)− v

τ

)

, (5.36)

Taking the derivative of the equilibrium velocity distribution v(ρ)ρ in Greenshields

model (5.13) with respect to the traffic density gives

v(ρ)ρ = −vm
ρm

, (5.37)

where vm is the maximum velocity and ρm is the maximum traffic density, so that

(ρv)t +

(

(ρv)2

ρ
− v(ρ)ρρ

2

)

x

= ρ

(

v(ρ)− v

τ

)

, (5.38)

Then the proposed model (5.31) is

G =

(

ρ

ρv

)

, f(G) =

(

ρv
(ρv)2

ρ
− v(ρ)ρρ

2

)

, S =

(

0

ρv(ρ)−v

τ

)

. (5.39)

Further (5.39) in quasilinear form, i.e. ρv(ρ)−v

τ
= 0, is

G =

(

ρ

ρv

)

, f(G) =

(

ρv
(ρv)2

ρ
− v(ρ)ρρ

2

)

, S =

(

0

0

)

. (5.40)

The Jacobian matrix A(G) = ∂f

∂G
from (5.40) is then

A(G) =

(

0 1

− (ρv)2

ρ2
− v(ρ)ρ2ρ

2ρv
ρ

)

(5.41)
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which gives

A(G) =

(

0 1

−v2 − 2v(ρ)ρρ 2v

)

(5.42)

The eigenvalues λi of the Jacobian matrix are required to obtain the flux in (1.9),

and are obtained from (5.42) as the solution of

∣

∣

∣A(G)− λI
∣

∣

∣
= 0, (5.43)

so that
∣

∣

∣

∣

∣

−λ 1

−v2 − 2v(ρ)ρρ 2v − λ

∣

∣

∣

∣

∣

= 0, (5.44)

and therefore

− λ(2v − λ) + v2 + 2v(ρ)ρρ = 0. (5.45)

Letting 2v(ρ)ρρ = D

λ2 − 2vλ+ v2 +D = 0, (5.46)

and the solutions are

λ1,2 =
2v ±

√

4v2 − 4(v2 +D)

2
= v ±

√
−D, (5.47)

which can be expressed as

λ1,2 = v ±
√

− (2v(ρ)ρρ). (5.48)

The equilibrium velocity distribution is a decreasing function of density and there-

fore

v(ρ)ρ ≤ 0, (5.49)

which ensures that the eigenvalues and eigenvectors are real. Substituting v(ρ)ρ from

(5.37) in (5.48) gives

λ1,2 = v ±
√

2vmρ

ρm
. (5.50)

The eigenvectors are obtained by solving

|A(G)− λI|x = 0 (5.51)
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where

x =

(

1

x2

)

. (5.52)

From (5.42) and λ1 = v +
√

2vmρ

ρm
from (5.50), (5.51) takes the form





−v −
√

2vmρ

ρm
1

−v2 + 2v(ρ)ρρ v −
√

2vmρ

ρm





(

1

x2

)

= 0, (5.53)

so the eigenvectors are

e1 =





1

v +
√

2vmρ

ρm



 , (5.54)

and

e2 =





1

v −
√

2vmρ

ρm



 . (5.55)

To obtain the average velocity for the proposed model, using (1.6) and (5.42), ∆f

can be expressed as

△f = A(G)△G =

(

△f1

△f2

)

=

(

0 1

−v2 − 2v(ρ)ρρ 2v

)(

△ρ

△ρv

)

, (5.56)

so that

△f2 =
(

−v2 − 2v(ρ)ρρ
)

△ρ+ 2v△ρv. (5.57)

Using f(G) in (5.40)

△f =

(

△f1

△f2

)

=

(

△ρv

△
(

(ρv)2

ρ
− v(ρ)ρρ

2
)

.

)

, (5.58)

Equating (5.57) with ∆f2 in (5.58) gives

(

−v2 − 2v(ρ)ρρ
)

△ρ+ 2v△ρv = △
(

(ρv)2

ρ
− v(ρ)ρρ

2

)

(5.59)

Considering that

2v(ρ)ρρ△ρ = △
(

v(ρ)ρρ
2
)

, (5.60)
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(5.59) can be expressed as

v2△ρ− 2v△ρv +△(ρv2) = 0, (5.61)

and taking the positive root gives the average velocity of the proposed model as

v =
△ρv +

√

(△ρv)2 − (△ρ)(△ρv2)

△ρ
. (5.62)

Substituting △ρv = ρi+1vi+1 − ρivi, △ρv2 = ρi+1v
2
i+1 − ρiv

2
i , and △ρ = ρi+1 − ρi in

(5.62), the average velocity at the boundary of segments i and i+ 1 is

vi+ 1

2

=

√
ρi+1vi+1 +

√
ρivi√

ρi+1 +
√
ρi

. (5.63)

The average density ρi+ 1

2

at the boundary of segments i and i+ 1 is given by the

geometric mean of the densities in these segments

ρi+ 1

2

=
√
ρi+1ρi (5.64)

Using (5.63) and (5.64), the average eigenvalues and eigenvectors are

λ1,2 = vi+ 1

2

±

√

2vmρi+ 1

2

ρm
e1,2 =





1

vi+ 1

2

±
√

2vm ρ
i+1

2

ρm



 (5.65)

The eigenvalues provide information about the rate of change in traffic flow. Equation

(5.65) indicates that the eigenvalues at the boundary of segments i and i+ 1 can be

interpreted as the average velocity plus the change in velocity due to transitions at the

segment boundaries. This change in velocity is dependent on the maximum velocity,

maximum density and the average density. The maximum density refers to the road

capacity, and a road with a larger capacity will have the smaller changes in velocity

than a road with smaller capacity. Changes in velocity will be higher with a larger

vm. Thus the faster the traffic flow, the larger the changes in the flow. The average

density ρi+ 1

2

also affects the changes in velocity. These changes will be greater with

a larger average density.

Using (5.43) and (5.51), the eigenvalues and eigenvectors of the PW model are
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obtained. The eigenvalues

λ1,2 = vi+ 1

2

± C0, (5.66)

show that the change in traffic velocity with the PW model occurs at a constant rate.

The corresponding eigenvectors are

e1,2 =

(

1

vi+ 1

2

± C0

)

(5.67)

The parameters vi+ 1

2

and ρi+ 1

2

for the PW model are the same as those for the

proposed model given in (5.63) and (5.64), respectively.

5.3.2 Entropy Fix

Entropy fix as described in Section 1.2.1 is applied to the Jacobian matrix of the

proposed and PW models.

The Jacobian matrix of the proposed model is

e|Λ|e−1 =





1 1

vi+ 1

2

+

√

2vmρ
i+1

2

ρm
vi+ 1

2

−
√

2vmρ
i+1

2

ρm



×









∣

∣

∣

∣

vi+ 1

2

+

√

2vmρ
i+1

2

ρm

∣

∣

∣

∣

0

0

∣

∣

∣

∣

vi+ 1

2

−
√

2vmρ
i+1

2

ρm

∣

∣

∣

∣









×









vi+ 1

2

−
√

2vmρ
i+1

2

ρm
−1

−vi+ 1

2

−
√

2vmρ
i+1

2

ρm
1









−1

2

√

2vmρ
i+1

2

ρm

,

and for the PW model is

e|Λ|e−1 =

(

1 1

vi+ 1

2

+ C0 vi+ 1

2

− C0

)

×




∣

∣

∣vi+ 1

2

+ C0

∣

∣

∣
0

0
∣

∣

∣vi+ 1

2

− C0

∣

∣

∣



×
(

vi+ 1

2

− C0 −1

−vi+ 1

2

− C0 1

)

−1

2C0

.

The corresponding flux is obtained from (1.9) using f(Gi) and f(Gi+1) and substi-

tuting e|Λ|e−1 for A(Gi+ 1

2

). The updated data variables, ρ and ρv, are then obtained

at time m using (1.10).
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5.4 Performance Results

The performance with the proposed and PW models are compared using the param-

eters shown in Table 5.2. The initial density distribution is

ρ0 =











































0.01, for x < 10,

0.3, for 10 ≤ x ≤ 30,

0.1, for 30 < x ≤ 40,

0.3, for 40 < x ≤ 50,

0.2, for x > 50,

(5.68)

which is considered a worst case traffic flow as there are two clusters with significant

density changes. This ρ0 is used to demonstrate traffic flow behavior on a circular

road of length 100 m.

The velocity constants used in the literature for the PW model range between

2.4 m/s and 57 m/s to evaluate the performance for a variety of traffic densities

[32, 34, 56]. Thus the velocity constants considered here are C0 = 5.83 m/s as in

[1] and C0 = 25 m/s. The traffic target is the Greenshields equilibrium velocity

distribution v(ρ) as given in (5.13) with vm = 34 m/s. The relaxation time is τ = 0.5

s. The road has a maximum normalized density of ρm = 1. The road step is chosen

as δx = 1 m so the total number of road steps is 100. The time step chosen for the

proposed model is δt = 0.01 s to satisfy the CFL condition [46]. The number of time

steps for the proposed model is 3000. For the PW model, the time step is δt = 0.001 s

with C0 = 25 m/s and 0.01 with C0 = 5.83 m/s to satisfy the CFL condition [46]. The

corresponding number of time steps is 30000 for C0 = 25 m/s and 3000 for C0 = 5.83

m/s. The total simulation time is 30 s.

Figure 5.1 gives the traffic density behavior with the proposed model. The traffic

density is more oscillatory at 1.5 s than at 15 s and 30 s. The traffic density separates

at 15 and 30 s into clusters. From 40 to 80 m, the traffic density at t = 30 s is

approximately uniform at value of 0.17. There are also two clusters of vehicles. The

first lies between 8 m and 40 m and has a density which increases from 0.21 at 8 m

to 0.28 at 20 m, and then decreases to 0.18 at 40 m. The second cluster lies between

80 m and 100 m. The density of this cluster varies from 0.17 at 80 m to 0.21 at 100

m.

Figure 5.2 presents the density behavior of the PW model with C0 = 25 m/s.
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The PW model produces an oscillatory traffic behavior. Further, the traffic divides

into ten small clusters of span approximately 9 m, which are very close. The average

density within the clusters ranges from 0.08 to 0.3. The density is very small between

the clusters.

The density behavior of the PW model with C0 = 5.83 m/s is given in Figure 5.3.

This shows that the abrupt changes in traffic density are smoothed at 1.5 s and 15

s. However, at 30 s the traffic exceeds the maximum density of ρm = 1 by a factor of

2.5, which is impossible.

The corresponding velocity behavior of the proposed model is shown in Figure

5.4. The traffic velocity is more oscillatory at 1.5 s than at 15 and 30 s. From 40

to 80 m, at t = 30 s the velocity is approximately uniform at 28 m/s. The velocity

within the first cluster varies from 25 to 27 m/s, and within the second cluster varies

from 27 to 28 m/s. This is realistic traffic behavior which is within the minimum and

maximum velocities. As expected, the traffic velocity is fast where the density is low

and vice versa.

The corresponding PW model velocity behavior with C0 = 25 m/s is given in

Figure 5.5. This shows that the traffic velocity oscillates at a lower frequency at

1.5 s than at at 15 s and 30 s. At 30 s, the velocity fluctuates from 22.5 to 45.5

m/s even though the maximum velocity is 34 m/s. There are also unrealistic abrupt

changes in velocity. On average, within the clusters the velocity varies by 20 m/s

within a distance of 8 m, which is not possible. The PW model velocity behavior

with C0 = 5.83 m/s is given in Figure 5.6. This shows that at 30 s, the velocity goes

below zero to −14 m/s at 68 m, which is impossible.

The proposed model traffic density and velocity behavior over a distance of 100

m for 30 s is given in Figures 5.7 and 5.8, respectively. These shows that the traffic

density and velocity with the proposed model is well behaved and has only small

variations. Traffic moves faster or slower at locations where the traffic density is low

or high, respectively, as expected. The velocity stays within the range of 0 to 34 m/s,

and the density between 0 and 1.

The PW model velocity and density behavior with C0 = 25 m/s is shown in

Figures 5.9 and 5.10 over a distance of 100 m for 30 s. Figure 5.9 shows that the

velocity ranges from 0 m/s to 160 m/s at 0.3 s, which is impossible. Further, Figure

5.10 shows that the traffic evolves into 10 clusters having widths of 9 m over the 100

m distance, which is not realistic. The PW model velocity and density behavior with

C0 = 5.83 m/s over the 100 m distance for 30 s is given in Figures 5.11 and 5.12,
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Table 5.2: Simulation Parameters

Name Parameter
maximum velocity vm = 34 m/s
equilibrium velocity distribution v(ρ)
relaxation time τ = 0.5 s
anticipation coefficient C0 = 25 m/s and 5.83 m/s
road length x = 100 m
time step for the proposed model δt = 0.01 s
number of time steps for the proposed model M = 3000
time step for the PW model with C0 = 25 m/s δt = 0.001 s
number of time steps for C0 = 25 m/s N = 30000
time step for the PW model with C0 = 5.83 m/s δt = 0.01 s
total time steps for C0 = 5.83 m/s N = 3000
road step δx = 1 m
number of road steps N = 100
simulation time tM = 30 s
Maximum normalized density ρm = 1

respectively. Degradation in traffic velocity and density behavior is developed with

the evolution of time over the distance.

The results in this section show that the proposed model provides realistic behavior

which is smooth, unlike the PW model. The PW model produces oscillatory traffic

behavior with C0 = 25 m/s, whereas with C0 = 5.83 m/s the PW model produces

unrealistic behavior.

5.5 Summary

A model has been proposed based on gas behavior. Analogies of traffic density,

velocity and traffic constant are developed. The traffic constant is based on the

physiological and psychological response of a driver. The proposed model performance

are compared with the PW model on a circular road having a traffic bottleneck. The

transitions in density at a bottleneck are realistically captured by the proposed model.

As expected, the transitions smeared out with the passage of time. The density and

velocity stayed with in the limits of maximum and minimum. The PW model adapts

unrealistic oscillatory behavior although C0 has been changed from a high to low value.

The traffic density overflows and as a result velocity goes into negative. The proposed
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Figure 5.1: The proposed model density behavior at 0 s, 1.5 s, 15 s and 30 s.
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Figure 5.2: The density behavior of the PW model with C0 = 25 m/s.
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Figure 5.3: The density behavior of the PW model with C0 = 5.83 m/s.
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Figure 5.4: The proposed model velocity behavior at 0 s, 1.5 s, 15 s and 30 s.
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Figure 5.5: The velocity behavior of the PW model with C0 = 25 m/s.
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Figure 5.6: The velocity behavior of the PW model with C0 = 5.83 m/s.

Figure 5.7: The proposed model density behavior from 0 to 30 s.

model provides promising results as evident from the performance evaluation.
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Figure 5.8: The proposed model velocity behavior from 0 to 30 s.

Figure 5.9: The velocity behavior of the PW model with C0 = 25 m/s.
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Figure 5.10: The density behavior of the PW model with C0 = 25 m/s.
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Figure 5.11: The velocity behavior of the PW model with C0 = 5.83 m/s.

Figure 5.12: The density behavior of the PW model with C0 = 5.83 m/s.
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Chapter 6

Route Merit Models for Traffic

Flow

6.1 Introduction

Route merit is a decision criterion which influences drivers to follow a path. In

this chapter, route merit based on traffic velocity, density and relaxation time are

proposed. Traffic velocity aligns during the relaxation time. In congestion, the traffic

density has a low variance. The interaction between vehicles is large which increases

the fluctuations in velocity and ultimately a higher rate of fuel consumption. With

large number of fluctuations in velocity, traffic can take a large time to reach their

destinations. The emission of CO2, hydrocarbons and the consumption of the fuel

are high with the fluctuation in velocity. In free flow, the traffic density has a large

variance. The distance between vehicles is large and their interactions are largely

independent. Therefore there are less fluctuations in traffic velocity in free flow and

ultimately there is less fuel consumption.

Route merit is based on the shortest period of time [24, 26], shortest distance [27],

flow region, familiarity of a route, degree of difficulty, tool cost, attraction points,

location of a road, geometry, traffic lamps, road surface, quality of service of a network

and road capacity. The route merit is also proposed as a trade off between distance,

time, congestion, difficulty and toll [24]. Some strategies include dynamic traffic sign

management, automatic cruise control, high tolls for congested routes, automatic

traffic flow, and dynamic route selection to influence drivers behavior and improve

the trip time [21]. These measures improve the road network utilization, and reduces
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congestion. However, an integrated model is required to control the flow and emissions

of the traffic [20].

In this chapter, route merit based on the Mach number, relative trip time and

traffic resistance are proposed to minimize the trip time, improve fuel consumption

and smooth the traffic flow. The Mach number is an analogous term to that used in

air traffic. In the air traffic, it indicates the utilization of air space. In this chapter,

the Mach number is used as an indicator of velocity fluctuation.

Trip time is the time taken by the traffic to reach a destination from an origin.

Trip time on a route is smaller with a larger velocity. Relative trip time gives the

comparison of trip time of a route when followed with different velocities.

The traffic resistance is a hindrance in achieving a larger velocity. Based on the

traffic resistance, route merit is proposed to select a route with minimum trip time.

The traffic on the route with minimum traffic resistance will have the minimum trip

time. In this chapter, traffic resistance is developed from analogies with fluid pressure.

Traffic resistance depends on acceleration and density. For a large acceleration, the

traffic faces large resistance due to fluctuations in velocity. For a low variance density

distribution on the road, traffic resistance will be large. The distance between vehicles

is smaller and the reduced ability to react to transitions, so the interaction between

the vehicles will be high. For a smooth flow, the traffic has a large variance density

distribution and the vehicles have less interaction between them. The fluctuations in

velocity are low and the traffic has the shortest trip time to reach the destination.

Further, route merit for a group of routes running between an origin and distination

is analogous to electrical resistance. An example is given in this chapter to determine

the route merit based on electrical resistance.

The rest of the chapter is organized as follows. The formulation of Mach number

is given in Section 5.2. Then the relative trip time is explained in Section 5.3. Section

5.4 gives the details of traffic resistance. We then calculate the traffic resistance based

on electric resistance in Section 5.5. Finally, Section 5.6 concludes the chapter.

6.2 Mach Number

Mach number is a parameter used for objects moving in fluids. This number compares

the velocity of an object to the velocity of sound through a medium [22]. Mach number

Mn is given as

Mn =
e

w
, (6.1)
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where e and w are the velocities of an object and sound, respectively. It is a dimen-

sionless quantity.

Mach number is applied to macroscopic road traffic theory such that it provides

the information of the relative velocities. e is analogous to the average velocity v of

the traffic and w to the maximum velocity vm. Then Mn for road traffic is given as

Mn =
v

vm
(6.2)

For traffic moving with maximum velocity v = vm

Mn = 1 (6.3)

The traffic with velocity lower than the maximum velocity will have Mn less than 1.

For bumper to bumper traffic having zero velocity

Mn = 0.

Therefore, the limits of Mn are

0 ≤ Mn ≤ 1. (6.4)

Mn = 1 indicates that traffic flow conditions are ideal, that is, the traffic has free

flow behavior and there are less fluctuations in velocity. The interactions between the

vehicles are minimum and the flow is smooth as desired. The utilization of the road

infrastructure is maximized as traffic will have minimum trip time. As Mn reduces,

the trip time will increase. The traffic conditions are worse for Mn close to zero, which

indicates congestion. The distance between the vehicles is smaller than free flow and

more interaction between the vehicles. There will be large fluctuations experienced

in velocity. It is a good criterion to estimate the delay in reaching a destination.

6.3 Relative Trip Time

The relative trip time is the time taken by the traffic moving from origin to destination

with velocity other than the maximum velocity. It helps in the selection of a route.
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It is calculated from a well known distance relation which is given as

d = vTtr, (6.5)

where v, Ttr and d are velocity, relative trip time and distance, respectively. If the

distance d be covered during the minimum time tm with maximum velocity vm then

d = vmtm, (6.6)

Comparison (6.5) and (6.6) gives

Ttr =
vmtm
v

, (6.7)

From (6.2), the Mach number is

Mn =
v

vm
,

then Ttr takes form as

Ttr =
tm
Mn

, (6.8)

For Mn = 1, the trip time is minimum and the relative trip time is then given as

Ttr = tm. (6.9)

That is, the traffic will have minimum trip time to reach the destination. This

is evident in the case of free flow where the traffic moves with maximum velocity.

Whereas for Mn = 0, the trip time becomes undefined as an uncertain time starts

adding to the trip time. Such situation takes place during congestions.

Figure 6.1 illustrates the trip time behavior with fluctuations in average velocity,

v based on (6.7). Maximum velocity vm is chosen as 33.33 m/s. Based on this vm,

the minimum trip time is tm = 0.03 s/m. It is shown that as velocity reduces with

reference to the maximum velocity, the trip time increases.

6.4 Traffic Resistance R

The traffic resistance is defined as the hindrance in achieving the maximum velocity.

In this section, the traffic resistance is developed from the fluid pressure analogies.
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Figure 6.1: Relative trip time behavior with fluctuations in velocity.

The fluid pressure expression per unit length is given as

p = ρa, (6.10)

where p is the fluid pressure, a is acceleration and ρ is the density. Fluid pressure

fluctuates with the changes in acceleration and density. There is a large traffic resis-

tance when the traffic acquires to accelerate to a large velocity in congestion. This

traffic resistance reduces with low density as interactions between vehicles are less

due to the large headway between them. In other words, interactions are largely in-

dependent. It is easier for the traffic to acquire large velocity and the tendency of free

flow is large. Therefore, the traffic resistance changes with fluctuations in velocity

and density. In this section, traffic resistance R is introduced which relates traffic

density and acceleration and is given as

R = ρa, (6.11)
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Traffic develops acceleration at the transitions due to change in velocity. Then, from

well known kinematic equation of motion, acceleration is given as

a =
vm − v

τ
, (6.12)

where vm is the maximum velocity attained by traffic while moving from velocity v

during a transition. vm is achieved during transition time τ . The transition time is

also known as relaxation time. Therefore substituting (6.12) in (6.11), gives

R = ρ

(

vm − v

τ

)

(6.13)

For a smooth flow, R will be zero and the traffic will reach the destination in minimum

trip time, that is

v = vm.

For a traffic, to start with zero velocity (v = 0), faces the maximum resistance.

Multiplying and dividing the numerator in (6.13) by vm, we get

R = ρvm

(

1− v
vm

τ

)

, (6.14)

Applying Mach number theory, that is Mn = v
vm

, we get (6.14) as

R = ρvm

(

1−Mn

τ

)

, (6.15)

For Mn = 0, that is v = 0, (6.15) gives

R =
ρvm
τ

. (6.16)

Thus in congestion, resistance is the maximum momentum per unit time, which is

required to completely mobilize the traffic to smooth flow. For Mn = 1, the traffic

moves with maximum velocity (v = vm), then (6.15) gives

R = 0. (6.17)

Thus, traffic having maximum velocity will have the minimum resistance and the trip

time to the destination will be minimum.
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Figure 6.2: Variation in traffic resistance with changes in mach number.

Figure 6.2 and 6.3 illustrates the traffic resistance behavior with changes in Mach

number and relaxation time. The traffic resistance behavior is based on the expression

(6.15). Figure 6.2 demonstrates the traffic resistance behavior with Mach number

ranging from 0 to 1. There are two groups of curves with distinct relaxation time.

The red curves has τ = 25 s, whereas for blue curves τ = 10 s. Each curve in a group

corresponds to the normalized density. The left and right most curves respectively

in a group corresponds to 0.5 and 0.9 normalized density. Whereas the middle curve

corresponds to 0.7 normalized density. The maximum velocity for both the groups is

assumed as vm = 22.22 m/s. As expected, resistance is minimum for Mn = 1 and

maximum for Mn = 0. At τ = 25 s, the resistance for 0.5 density is 0.45 veh/s2, 0.7 is

0.62 veh/s2 and for 0.9 is 0.8 veh/s2. At τ = 10 s, the resistance for 0.5 density is 1.1

veh/s2, 0.7 is 1.55 veh/s2 and for 0.9 is 2 veh/s2. As τ reduces, resistance increases

and is evident from these results. Further, as the density rises, the traffic resistance

becomes larger.

Figure 6.3 demonstrates the traffic resistance behavior with changes in relaxation

time. The maximum velocity is assumed as vm = 22.22 m/s and average velocity
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Figure 6.3: Variation in traffic resistance with changes in relaxation time.

v = 11.11 m/s. The relaxation time τ is varied from 5 to 14 s. The variation in

traffic resistance is demonstrated with normalized densities. For a large density, the

fluctuation in traffic resistance is larger with the change in relaxation time. For an

individual case of density, the resistance is higher at smaller values of relaxation time.

This is more evident in the high density curves. That is, traffic required to reach the

maximum velocity in a short period of time will face high resistance. At normalized

density 1, R = 2.25 veh/s2 at τ = 5 s, whereas at τ = 14 s, R is 0.62 veh/s2. For

0.1 normalized density, R = 0.25 veh/s2 at τ = 5 s, whereas at τ = 14 s, R is 0.05

veh/s2. The traffic resistance has small variations for low density.

6.5 Traffic Resistance based on Electric Circuit

Theory

In this section, traffic resistance is calculated based on the electric circuit theory.

In electric circuit theory, the electrical resistance offered to the flow of current is

calculated in series and parallel combinations [28]. For a number of series resistances
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from R1 to Rn in an electric circuit, the total resistance Rt is given as

Rt = R1 +R2 + ......+Rn (6.18)

The total resistance Rt in series is the sum of all resistances in a circuit. The total

electric resistance for the resistances installed in parallel is given as

1

Rt

=
1

R1

+
1

R2

+ ......+
1

Rn

(6.19)

Most of the current will pass through the least resistance Rle in parallel combinations,

that is,

Rle = min (R1, R2, ..., Rn) (6.20)

The traffic resistance on the road is analogous to electrical resistance. For a large

traffic resistance on a road, less number of vehicles will pass through. The traffic ve-

locity is analogous to the electric current. Velocity is slow with high traffic resistance.

The road is viewed as electric conductor. Therefore, the traffic resistance offered to

the flow at multiple locations on a long infinite road from origin to destination is

given by (6.18). The traffic resistance for multiple roads running between the origin

and destination is given by (6.20). The destination is considered as datum node.

This concept is applied to a road network with the traffic resistance mentioned in

Figure 6.4. There are three routes leading to the destination. one is a direct route,

and the other two are having two and three branches. The choice of a route depends

on the traffic resistance of a network or a direct route. The direct route is having

resistance R9. The other two routes total resistances are calculated with the help of

(6.18) and (6.20) for the comparison. For the route with three branches, is having all

the branches in parallel. Parallel branches are solved according to (6.20) as

1

R2eq

=
1

R2

+
1

R9

+
1

R10

. (6.21)

The final total resistance for this branch will be the summation of resistances and

solved according to (6.18) as

R1eq = R1 +R2eq +R3. (6.22)
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For the route with two branches, route merit is calculated as

1

R6eq

=
1

R6

+
1

R7

, (6.23)

and have the final total resistance as

R5eq = R5 +R6eq +R8 (6.24)

The traffic resistances of the three routes, that is R9 from the direct route, R1eq from

(6.22), and R5eq from (6.24), are then compared for the minimum as

Rr = min (R1eq, R9, R5eq) (6.25)

Rr is the minimum resistance of the route and traffic traversing on this route will

have the minimum trip time. There will be less fluctuations in the traffic flow.

The probability of a route is the reciprocal of the route resistance. A route having

lowest resistance will be having the highest probability to be followed. The probability

of a route is given as

Pr =
1

Rr

, (6.26)

where Pr denotes the probability of a route. The probabilities of a route can be defined

at different intersections for different routes. The route with minimum resistance will

have the highest probability to be followed.

6.5.1 Range of Traffic Resistance and Time Delay

The traffic resistance exists when there are fluctuations in flow. The maximum traffic

resistance occurs at bumper to bumper density. The bumper to bumper density is

a complete congestion and this is the maximum density a road can take. Traffic

resistance is minimum for the traffic flow at equilibrium velocity.

Time delay is the time spent additional to the minimum trip time due to the

fluctuations in flow and denoted by Y . The decision to follow a route can be made by

comparing the traffic resistances of the routes. Let the traffic resistance for the route

1 be R, for route 2 be 2R and for route 3 be 4R as shown in Table 6.1. Then by the

comparison of the traffic resistances of the three routes, it can be noted that route

3 will take 4 times travelling time as that of route 1 and 2 times as that of route 2.
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Table 6.1: Traffic Resistance and Time Delay of Routes

Name Parameter Value
traffic resistance of route 1 R1 R
traffic resistance of route 2 R2 2R
traffic resistance of route 3 R3 4R
time delay of route 1 Y1 1
time delay of route 2 Y2 2
time delay of route 3 Y3 4
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The fluctuations in flow will be minimum in route 1, as there will be less fluctuations

in velocity. The density on route 1 will be minimum among the three routes.

6.6 Summary

Since the trip time is dependent on the velocity profile, therefore a route merit was

proposed based on the fluctuations in velocity. The air pollution level and consump-

tion of fuel improve with the minimum fluctuations in traffic velocity. The Mach

number, relative trip time and traffic resistance were used to evaluate route merit to

realistically predict traffic behavior. The route merit can either be used as soft or

hard data for a road network selection. The simplicity of route merit calculation in a

road network based on electric resistance is noteworthy.
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Figure 6.4: Selection of a route.
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Chapter 7

Conclusions

This chapter summarizes the contributions to traffic flow models presented in this

dissertation. A brief outline of the accomplishments are given with comments on

their importance.

7.1 Contributions

In this dissertation, vehicle traffic modelling for intelligent transportation systems was

investigated. The goal was to develop realistic traffic flow models. Five subproblems

were formulated to characterize the traffic flow such that congestion and pollution

are mitigated. The following traffic modelling problems were studied.

1. The study was started by investigating the PW model for its unrealistic stop

and go behavior at discontinuities. The traffic flow changes according to the

conditions ahead. Based on this property, a new model was proposed such that

traffic velocity and density adjust in proportion to the change ahead. This

model mitigates the deficiencies of the PW model.

2. The transition behavior of traffic flow with the LWR model was investigated.

The LWR characterizes the traffic flow on a long idealized road. The flow

adjustment to the traffic ahead depends on the safe velocity. Based on this

property, a new model was proposed which included the realistic parameters to

predict the traffic flow during transitions.

3. A new model was proposed to characterize the physiological and psychological

response of driver to changes in the traffic flow. For a slow response, the traffic
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becomes clustered, while for a fast response the traffic flow is more uniform.

A regulation parameter was introduced to further refine the driver response to

forward conditions. This allows for a more realistic traffic characterization than

with other models in the literature.

4. A new model was proposed to characterize the distribution of traffic flow on the

basis of safe time, vehicles interaction, velocity and driver response. The model

was compared with the PW model and it was found that traffic clusters with

the new model span a large distance. The proposed model avoids congestion

and tends to produce a smooth traffic flow behavior.

5. Route merits were proposed based on the velocity profile of a route. The route

merit can be determined on the basis of real-time or pre-recorded data. The

simplicity of selection of a road network or a road is noteworthy.

Solutions to the above problems are proposed to realistically characterize the traffic

flow to mitigate congestion and improve public safety.

7.2 Future Work

There are some interesting future research problems for traffic flow modelling for

intelligent transportation systems.

• A noteworthy problem is to develop a distribution for the safe distance. Differ-

ent traffic flow situations have different safe distances due to drivers response.

This safe distance affects the traffic flow dissemination and distribution.

• Another important problem is to develop a realistic equilibrium density distri-

bution. This distribution should be based on the psychological and physiological

response of drivers.

• An interesting problem is the development of a distribution for the regulation

value of the model proposed in Chapter 4. This distribution should be based

on the driver response.

• All of the developed models can be extended to crowd modeling to effectively

disseminate crowd traffic in case of emergency evacuation.
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