
Employing Directive Based Compression Solutions on Accelerators Global Memory

under OpenACC

by

Ebad Salehi

B.Sc., Sharif University of Technology, 2012

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical and Computer Engineering

c© Ebad Salehi, 2016

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.



ii

Employing Directive Based Compression Solutions on Accelerators Global Memory

under OpenACC

by

Ebad Salehi

B.Sc., Sharif University of Technology, 2012

Supervisory Committee

Dr. Amirali Baniasadi , Supervisor

(Department of Electrical and Computer Engineering)

Dr. Kin Fun Li, Departmental Member

(Department of Electrical and Computer Engineering)



iii

ABSTRACT

Supervisory Committee

Dr. Amirali Baniasadi , Supervisor

(Department of Electrical and Computer Engineering)

Dr. Kin Fun Li, Departmental Member

(Department of Electrical and Computer Engineering)

Programmers invest extensive development effort to optimize a GPU program

to achieve peak performance. Achieving this requires an efficient usage of global

memory, and avoiding memory bandwidth underutilization. The OpenACC program-

ming model has been introduced to tackle the accelerators programming complexity.

However, this models coarse-grained control on a program can make the memory

bandwidth utilization even worse compared to the version written in a native GPU

languages such as CUDA. We propose an extension to OpenACC in order to reduce

the traffic on the memory interconnection network, using a compression method on

floating point numbers. We examine our method on six case studies, and achieve up

to 1.36X speedup.
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Chapter 1

Introduction

1.1 Introduction

Graphics Processing Units (or simply GPUs) can potentially provide very high peak

performance. This high performance, however, has proven to be very difficult to

achieve. There are many obstacles facing designers in the path to achieve this perfor-

mance. In particular, in order to make use of the high amount of computation power

in GPU computational resources, the required data should be accessed from memory

in a very timely fashion. One way to achieve lower memory access time is to use the

memory bandwidth more efficiently. To this end, many studies have suggested both

hardware and software solutions [7, 13, 21].

Despite all past efforts, developing a GPU program which utilizes the memory

bandwidth effectively and efficiently calls for strong skills and vast experience.

Programming models such as CUDA(Compute Unified Device Architecture) allow

for fine-grained control over both data and parallelism. CUDA’s flexibility allows pro-

grammers to fully optimize their applications, albeit by extensive development effort.

The OpenACC programming model [5] was designed to alleviate the complexity of
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accelerator programming. OpenACC provides programmers with a directive-based

API so that they can accelerate compute intensive parts of codes by offloading the

computations to the accelerator. Although OpenACC may decrease the development

effort by a factor of 6.5X[20], this is at cost of performance loss.

There are many computation domains in which variation in results are tolerable

to some extent. For example applications such as image, video, and audio processing,

dynamical simulations, machine learning algorithms are domains for which approx-

imation can be used to trade accuracy for other factors including but limited to

performance, power, and storage. Some previous works have been done to investigate

the feasibility of approximation and how it affects the outcome in aforementioned

areas. We talk about this in the next chapter more.

In this work we enhance GPU performance by proposing a set of clauses for

OpenACC to allow programmers to achieve faster runtime at the expense of negligible

accuracy cost. These clauses make it possible for programmers to mark the datasets

for which they do not need full precision and therefore can exploit compression. Once

such data sets are identified, then our run-time framework performs a fast analysis on

the data and applies the compression method. It also stores the necessary information

later required for decompression.

In summary, we make the following contributions:

• We introduce a new double-precision floating-point compression technique for

GPUs to save global memory bandwidth. Our technique reduces the memory

bandwidth demand by half.

• We propose a novel OpenACC clause that allows programmers to exploit our

compression technique readily in a high-level language. We show that with

a minor modification in existing OpenACC code, we can enhance OpenACC

applications to take advantage of our compression technique.
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• We evaluate our proposed compression solution for six real world OpenACC

benchmarks. In each benchmark, we investigate various data set sizes and

compare the performance of our proposed solution to the baseline OpenACC.

• We investigate the run-time performance of our compression technique, report-

ing the breakdown of time in i) kernel execution, ii) kernel launch, and iii)

compression overhead.

The remainder of this document is as follows. In Chapter 2, we review the back-

ground of accelerator programming platforms and present a brief summary of the

floating point IEEE 754 Standard. In Chapter 3, we review related works. In Chap-

ter 4, we introduce our proposed OpenACC clauses and discuss how to use them.

We also detail the compression method scheme we use in this work in that chapter.

In Chapter 5, we present our methodology. In Chapter 6, we evaluate our solution

using many case studies, and discuss issues regarding the clauses applicability and

performance. Finally, in Chapter 7 we offer conclusions, and end this thesis with

future work.
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Chapter 2

Background

The focus of this thesis is applying compression on floating point data transfered

between GPU memory and its cores which is controlled by OpenACC directives.

To understand this work thoroughly the reader should know the underlying basis

of discussed topics. This chapter provides an overview of the fundamental concepts

of GPU architecture, IEEE floating point standards, and OpenACC programming

model.

2.1 GPU Architecture

This section gives a summary of a GPU general architecture focusing on the units

that matter in this work. The architecture which is explained in this section is based

on the NVIDIA Kepler GPU architecture. We mention the differences with other

architectures if it is necessary. We also use NVIDIA and CUDA terminology to refer

various GPU concepts in this document.



5

2.1.1 SIMD Architecture

GPUs execution units are located in Streaming Multiprocessors (SM). Each SM con-

sists of a number of execution lanes, namely, Streaming Processor (SP). SPs in an

SM use Single-Instruction, Multiple-Data (SIMD) architecture to execute the instruc-

tions in order to improve the computation efficiency. Therefore, threads assigned to

an SM are grouped into 32 thread wavefronts (Warp) which execute in lockstep man-

ner on the SIMD hardware. In the case that threads follow different execution paths,

the hardware uses a stack-based mechanism to handle the control flow divergence by

serializing the execution of threads that have diverged to other paths.

2.1.2 Memory Subsystem

There are many data storage resources on GPUs which are used for different purposes.

In this subsection we introduce the most important ones which are also used in our

work.

DRAM (global memory) is the main data storage on the GPU. It is accessed

by SMs through a 2-level cache hierarchy. Each SM contains an L1 cache (64 KB in

Tesla K20) which can also be statically configured to perform as a software managed

cache. There is also an L2 cache shared between all SMs. In the case that data is not

available in neither of aforementioned caches the global memory is accessed.

Due to memory and interconnection network latency threads in a warp should

wait some cycles when they access global memory to receive the requested data.

In the case that there are ample number of warps running on an SM, the memory

latency does not degrade performance, since other warps can execute their instructions

in the meantime. So enough parallelism can prevent SM under-utilization which,

unfortunately, is not possible in all applications.

The global memory access latency cycles vary for different memory access patterns
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and sizes. Ideally, all the threads in a warp access aligned sequential addresses in the

memory as shown in figure 2.1. Therefore, all the memory requests are coalesced into

one memory transaction. On the K20 GPUs, every successive 128 bytes which can be

accessed as 32 single precision or integer words by a warp (32 consecutive threads) in a

single memory transaction. However, the following conditions may cause uncoalesced

memory accesses which are handled in serial transactions, and increase the memory

latency.:

• Non-sequential Memory Access

• Unaligned Memory Access

• Sparse Memory Access

Non-sequential Memory Access: Threads in a warp may access words in

memory in different orders as illustrated in figure 2.2, and it may cause serialization

in handling the memory requests. However, in K20 GPUs as long as all the accessed

words belong to a memory block, they can be combined into a single memory trans-

action. The earlier NVIDIA GPUs with older compute capabilities are not able to

handle these kind of memory access in a single transaction though.

Unaligned Memory Access: The memory access pattern shown in figure 2.3

is sequential but unaligned. The last requested word is in a different memory block

and must be accessed in a different memory transaction. Therefore, in this case two

memory accesses are required.

Sparse Memory Access: If threads in a warp access words in different memory

blocks, then more than one memory transaction is needed to handle all threads’

requests. Depending on how sparse the access addresses are, the number of memory

transactions vary.
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Figure 2.1: Ideal Memory Access

To use the memory bandwidth more efficiently, NVIDIA GPUs with compute

compatibility of 1.2 and higher are capable of performing transactions of three differ-

ent sizes; 128, 64 and 32 byte transactions. This capability is useful to avoid wasted

bandwidth when the memory access pattern is very sparse.

Constant memory is part of the global memory (64 KB in Tesla K20), and

physically resides on the dram. It is cached in per streaming multiprocessor constant

caches (8 KB in Tesla K20). In the cache miss cases its access latency is as long as

global memory. But in the case that the requested data exists in the constant cache,

the access latency can be as low as accessing registers, depending on the number of

unique requested addresses. Since constant memory is optimized for the situations

when a warp of threads reads the same location, the lowest access latency is achieved

when a single data element should be broadcast between all threads of a warp. If

different addresses are accessed then the memory requests get handled serially.
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Figure 2.2: Nonsequential Memory Access

Figure 2.3: Unaligned Memory Access
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2.2 CUDA

CUDA programs consist of host and device codes which execute on CPU and GPU

respectively. Parallel portions of the code which are executed on the device are

referred to as kernels. Thousands of lightweight threads execute the same CUDA

kernel. These threads are identified by their unique ID and access different bytes

of the off-chip DRAM memory which is shared among them. This results in a huge

number of memory requests. Depending on how memory intensive an application is,

the memory traffic can saturate the memory bandwidth and make it a bottleneck.

Matrix multiplication is an example of such applications. One solution to this problem

is to tune CUDA programs and employ computation overlapping techniques to hide

the memory latencies. However, this is a tedious process and is not always possible.

2.3 OpenACC Model

OpenACC is an API by which programmers can offload regions of a serial code from

CPU to an accelerator. This API provides two types of compiler directives to facilitate

the process of accelerating serial codes. The two API classes are data management

and parallelism control. Directives can be accompanied by multiple clauses to control

different parameters.

Data management directives allow programmers to transfer data between host and

accelerator devices as well as allocating device memory. Parallelism control directives

specify regions of the code which are intended to be executed on the accelerator (e.g.,

mostly work-sharing loops). They also enable controlling parallelism at different

granularities, variable sharing/privatization, and variable reduction. In OpenACC

there are four levels of parallelism: gang, worker, vector, and thread. The equivalent

terms in CUDA terminology are kernel, thread block, warp, and thread, respectively.
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2.4 IPMACC

IPMACC is a framework for translating OpenACC programs to CUDA or OpenCL.

To generate the final executables for accelerators the framework makes use of system

compilers such as nvcc. In this work we use IPMACC to extending the OpenACC

model. In this section we detail the features of IPMACC.

2.4.1 IPMACC Infrastructure

IPMACC accepts C/C++ files enhanced by OpenACC API to execute on accelera-

tors. The output of the compilation process can be object code, binary executable

or equivalent CUDA/OpenCL codes. Figure 2.4 illustrates the IPMACC compilation

flow which consists of 4 steps.

Pre-process: In this stage the syntax of the input file is verified. The code should

comply with C/C++ and OpenACC API syntax. IPMACC also normalizes the

C/C++ syntax notations to simplify the following compilation stages. For instance

after this stage all control and loop regions (if, while, for) will be fully-bracketed

which makes it easier to locate the scope of each OpenACC region.

Intermediate XML Form: During this step the code is categorized into seg-

ments, each of which enclosed with one of the following XML tags: C code, OpenACC

pragma, and for loop. The codes in the C code tags will not be touched during the

compilation, and remain as they are. OpenACC pragma tags are replaced with func-

tion calls from run-time system to implement the desired functionality, such as data

movement or memory allocations. The codes tagged by for loop remain to be analyzed

for parallelization based on the directive used in the OpenACC code.

Intermediate XML format to CUDA/OpenCL: Translating the interme-

diate XML format to CUDA/OpenCL source code is performed in nine steps in
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IPMACC.

1. In this step OpenACC information is extracted from code and stored in the

process. The OpenACC related tags are replaced with dummy function calls. At the

end of the compilation these function calls are replaced with the codes executing the

computation on the accelerator (ex. CUDA kernel launch), data transfers codes, and

host-accelerator synchronization operations. After this step XML tags are omitted,

and the code returns back to C/C++ syntax. Then the code is split into two code-

blocks: i)Regions code which includes OpenACC data clauses and kernels regions,

and ii)Original code which is non-OpenACC related codeblock.

2. By calculating the syntax tree of C/C++ code, IPMACC keeps track of vari-

able, types and functions defined out of the OpenACC regions. This information is

necessary for generating the accelerator code.

3. In this step, which is performed in parallel to the previous one, global scope is

searched as well as the parent scope of each Regions code for declarations/prototypes

that are referred to. Dummy function calls which represent single Regions code are

used as entry points for the search.

4. The kernel code which is targeted to be executed on the accelerator is gen-

erated in this step. To do so, the available parallelism should be specified, loop

iterations should be shared between threads, and reductions should be performed

on shared variables. In this step kernel arguments also are defined, and out-defined

declarations/prototypes get regenerated.

5. In parallel to step 4 the dummy functions calls associated with OpenACC mem-

ory management clauses are replaced with real functions that perform the intended

memory operations including host-accelerator pointer exchange, data copy in/out,

and memory allocation.

6. In parallel to step 4 user-defined types and functions corresponding to each
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Figure 2.4: IPMACC Compilation Flow

Regions code are found by searching the AST of original code created in the 2nd

stage of the compilation. These declarations will be modified and added to the kernel

code.

7. Now that the kernel is constructed it should be invoked. In this step dummy

OpenACC kernel region calls are replaced with the kernel invocations. In case there

is a reduction clause in loop directive an extra function call will be added to as well.

8. By appending forward declaration to the code, it will be able to execute on the

target accelerator.

9. The generated accelerated code is stored on the disk. The file extension is

specified based on the target language (CUDA/OpenCL).

Generating the binary file using system compiler: In this stage, the system

compiler (nvcc or g++) is invoked to generate the final binary file. This invocation

uses the compilation flags passed to ipmacc command at the beginning of the compi-

lation process. The output can be either an object file or an executable binary.

2.5 Floating Point

Floating point standard is defined in the IEEE 754 Standard so that different plat-

forms can exchange floating point data consistently. Two types of floating point

numbers, which are commonly used are 32 and 64 bit numbers. 32 bit encoding is

referred to as single-precision and the 64 bit standard is called double-precision. The

float and double are the equivalent C data types respectively. Any floating point
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Figure 2.5: IEEE 754 Floating Point Format

number consists of a sign bit, exponent part, and mantissa. Figure 2.5 illustrates how

many bits are dedicated to each part of floating point numbers in IEEE 754 standard.

(The numbers in brackets corresponds to double precision.)

Floating point representation covers a large range of real numbers. The precision

of a number stored in this format is inversely proportional to its magnitude. Small

numbers have higher precisions and precision drops as the numbers grow. Formula 2.1

decodes binary floating point numbers in IEEE 754 format. One can realize that the

floating point numbers between two consequent powers of two have equal exponents

and differ only at their mantissa. Hence, the number of numbers that can be encoded

in floating-point between consequent powers of two is constant and limited to the

mantissa’s different values. We exploit this fact and map a range of numbers to a

range of same-exponent numbers and omit the redundant exponent part.

(−1)sign × 2exponent−bias × (1.mantissa)2 (2.1)

In this chapter we provided the necessary background information one should

know to understand the work in this document. However, depending on the readers

expertise they may need additional information. We suggest reading the referenced

documents for more details on the concepts discussed in this thesis.
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Chapter 3

Related Works

To the best of my our knowledge, our work is the first attempt to add compression

capabilities to compiler directive based frameworks. Samadi et al. [17] developed

SAGE, a transparent approximation system, which accepts CUDA programs and

improves performance at the cost of losing accuracy to the level programmers specify.

Their static compiler automatically generates multiple kernels with various degrees

of approximation and a run-time system chooses one of the kernels according to the

feedbacks. They applied data compression to reduce DRAM memory bandwidth

usage as an approximation technique.

Ratanaworabhan et al. [16, 8] introduced lossless floating-point value compres-

sion algorithms suitable for situations that fast real-time compression and decom-

pression operations are needed. These algorithms are inspired by VPC, a value

prediction-based compression algorithm for program execution traces. These predic-

tor algorithms are used in hardware to predict the content of CPU registers, including

floating-point registers. To achieve this goal the algorithms are designed to perform

a high volume of predictions per second. However, the proposed compression algo-

rithms do not maintain a fixed compression rate, and depending on the input data
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the compression ratio changes. The suggested compression algorithms are designed

to work with streams of data, and to process the data sequentially which makes it

less applicable in parallel devices such as GPU.

Sathish et al. [18] show the efficiency of hardware-based lossless and lossy com-

pression methods to improve the performance of the off-chip dram memory in GPUs.

They present modifications needed to the GPU microarchitecture to implement loss-

less and lossy compression methods for data transfer through the GPU memory I/O

links. Their proposed programming model and unique memory controller architecture

is transparent to the workloads and compilers. The lossy compression technique ex-

ploits the fact that floating-point numbers’ precision is usually higher than necessary,

and truncating the least-significant bits can be considered as a low-risk compression

method. They show that GPUs equipped by their proposed compression hardware

can improve the performance of many memory-bound workloads by 26% on average

for GPUs with L1 caches but without L2 caches, at the cost of negligible power and

area overheads compared to those of a GPU. In the case using the compression tech-

nique and adopting an L2 cache of size 768KB the performance improvement elevates

to 37% compared to that of a GPU with the same size L2 caches but without the

compression technique.

Hoshino et al. [12] investigate the impact of memory layout on the performance

of NVIDIA Kepler, Intel XeonPhi, and Intel Xeon processors, under directive-based

programming languages. They found that having structure-of-arrays is much more

efficient than array-of-structures under Kepler and XeonPhi, while it has minor im-

pact on the performance of Xeon. They explain this by the relatively smaller cache

employed by Kepler (110 Bytes per hardware thread) and XeonPhi (128 KBytes per

hardware thread), compared to Xeon (1048 KBytes per hardware thread). They

also introduce a new directive allowing the programmer to change the data layout of
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multi-dimensional arrays.

Wienke et al. [20] compare the performance and development effort of two Ope-

nACC applications to their equivalent OpenCL implementation. They measured the

development effort by considering the modified code lines and found that OpenACC

requires 6.5X lower development effort compared to OpenCL. They also reported the

best-effort performance gap is of 2.5X. They found that this large performance gap

is due to OpenACC’s inability to exploit software-managed cache.

Kraus et al. [14] investigated the opportunity to improve the performance of

CFD workloads through OpenACC. They applied several CUDA-like optimizations

at the OpenACC level, including texture cache and occupancy optimizations. They

apply texture memory optimization by declaring variables as constant. They alter

the streaming multiprocessor’s occupancy by specifying vector length (or thread-block

size). They found that the optimal occupancy is the point with higher cache hit rate,

since the CFD workloads tend to work on large working sets. They also transform

array-of-structures to structure-of-arrays to optimize memory layout (returned nearly

52% performance improvement).

Govett et al. [10] compare the performance of three different OpenACC imple-

mentations under NIM work- load. They perform three optimizations in their own

implementation, called F2C-ACC. Among these optimizations, they found that vari-

able demotion technique can improve performance significantly. Variable demotion

avoids transferring the entire dimension of an array when only certain indices are ac-

cessed. This can decrease the memory transfer time and also allow generation of more

efficient kernel code. For instance, variable demotion on a 1D array, where possible,

can replace global memory array accesses with scalar or register accesses.

Hoshino et al. [11] studied the performance of two OpenACC microbenchmarks

and one real world CFD application. They examined the common and application-
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specific optimization techniques for OpenACC and CUDA. They found that the cur-

rent OpenACC compilers achieve about 50% to 98% of performance of the CUDA

versions depending on the compiler.
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Chapter 4

Proposed Compression Clauses

and Implementation

In this chapter, we introduce our new OpenACC clauses by which programmers can

reduce the memory bandwidth load of their program. Using this programming inter-

face programmers can take advantage of a set of under-the-hood API functions and

kernel extensions which will be explained thoroughly later in this chapter.

4.1 Proposed Compression Clauses

Applying the proposed data transfer clauses on a data set compresses it on the host,

and transfers the compressed data set to the device. Consequently, less traffic is

generated on memory interconnection network when the kernel tries to access the

compressed data. Also transferring data from host to device (and vice versa) becomes

much less time consuming.

The proposed clauses should be used together and in two different stages of the

OpenACC code; i. Data transfer, ii. Kernel.
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4.1.1 Data Transfer Clauses

Any data set used in the kernel regions can be transferred to the accelerator device by

one of the OpenACC clauses listed in the left column of table 4.1. To use compression

on a data set, the data must be first copied by one of the proposed clauses in the right

column of table 4.1 instead of the regular data transfer clauses in the left column.

Using ccopyin and ccopy makes the compiler call an alternative API function, which

compresses the data on the host, before copying it to the device. In the meantime

other modifications may be done on the data (e.g. changing the array of structs to

struct of arrays) so that it makes the compression more effective. If ccopy or ccopyout

is used, the data set is copied back to the host memory and gets decompressed there.

In addition to the data transfer clauses’ predefined parameters, we also introduce

two optional input parameters (Min and Max) for data transfer clauses. The com-

pression method we use needs the maximum and minimum element of the data set

to operate. Calculating these two parameters causes an overhead. However, in or-

der to eliminate it, programmers can specify the range of the data set by passing

these two parameters, and therefore prevent the unnecessary calculations. Passing

these parameters is mandatory if there is a possibility that the range of the data set

can vary during the application execution, or if ccopy is being used. Since for the

correct functionality, the compression method needs to know the range of the data

set throughout the program execution. The programmer is responsible to make sure

that the program is informed of the accurate range by passing maximum and mini-

mum with safe margin. Note that the more tight this range is, the more precise the

compression method. Hence, the programmer should specify the narrowest possible

range. Below we show an example of applying compression on a data set, named

cdata:

compression copy(cdata[0:SIZE:MIN:MAX])
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In this example MIN and MAX are the minimum and maximum of the data set.

Table 4.1: Compression Copy Clauses
Regular Data Compressed Data

copyin compression copyin(ccopyin)

present or copyin present or compression copyin

(pcopyin) (pccopyin)
copy compression copy(ccopy)

present or copy present or compression copy

(pcopy) (pccopy)
copyout compression copyout(ccopyout)

present or copyout present or compression copyout

(pcopyout) (pccopyout)

4.1.2 Compression Clause

After the compressed data is copied to the device, the compiler must be instructed

to generate kernels which work properly with the compressed data. In fact, kernels

need to decompress the compressed data before the first use. Therefore, we introduce

compression clause for this purpose. Pointers to the compressed data sets must be

marked by the compression clause on the kernels or the parallel directive. While

compression can be used on kernels directive, the data transfer clauses can be

used on both kernels and data directives. For instance, listing 4.1 shows the Ope-

nACC implementation of matrix-matrix multiplication using our proposed clauses.

pccopyin is used on data directive to transfer matrices a and b. Also the kernel

directive is annotated by compression clause with a and b matrix pointers.

There is a reason why we introduce a separate clause (compression) for the

kernels directive. In an application, the codes related to data transfer and the codes

of the kernel may be listed in two different files. Hence, compilation of those files may

be done separately. In order to compile those files correctly, the compiler should be

hinted about the compression enhanced data sets in each file distinctly.
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Listing 4.1: OpenACC Matrix-Matrix Multiplications Using Compression

#pragma acc data pccopyin(a[0:SIZE*SIZE],b[0:SIZE*SIZE])\

pcopyout(c[0:SIZE*SIZE])

#pragma acc kernels compression(a,b)

#pragma acc loop independent

for (i = 0; i < SIZE; ++i) {

#pragma acc loop independent

for(j=0; j<SIZE; j++){

float sum=0;

for(l=0; l<SIZE; l++){

sum += a[i*SIZE+l]*b[l*SIZE+j];

}

c[i*SIZE+j]=sum;

}

}
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4.2 Compression Implementation

In this section we present the compression method we use in this work. By using the

programming interface introduced in the previous section a compression scheme is

initiated which can be applied on either 32 or 64 bit floating point data sets. What

follows elaborates the underlying compression mechanisms which is implemented as

an extension to IPMACC.

4.2.1 Compression

To compress the floating point numbers we use a flexible method which can pack any

floating point number into an arbitrary small set of bits. In the first step we find the

number which has the maximum absolute value in the data set. This step is done

only if the programmer does not specify the data set range. We use the specified

range to calculate the maximum absolute value in the data set if it is available. By

dividing all the numbers in the data set by the maximum absolute value multiplied

by two, we map them to the (-0.5,+0.5) range. We then add each number to 1.5 and

change the range to (1,2). Accordingly, the exponent part of all these floating point

numbers will be equal to 01111111 in case of single precision and 01111111111 in case

of double precision. Therefore the exponent part can be omitted from the number

representation, without losing any information. Then, we only keep a limited number

of mantissa’s significant bits to compress data. For instance, to apply a compression

ratio of 2 to a single precision floating point number, the seven least significant bits

of mantissa should be thrown away. At the end, 16 bits remain which are stored as

the compressed format of a 32-bit floating point number. Code listing 4.2 shows the

compression method implementation for compression ratio of 2.

Figure 4.1 is an example of compressing a 32-bit floating number which in this
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case is Pi. Figure 4.1.1 shows the most accurate binary representation of Pi in single

precision floating point format. Assuming that the maximum absolute value of the

numbers is 4.0, numbers of the data set must be divided by 8.0 (4.0 × 2) and added

to 1.5, so that they are in the range (1,2). Figure 4.1.2 shows the Pi mapped to (1,2)

in binary format. After shifting the bits 7 times and truncating the exponent and the

sign bits, 16 bits remain as the compressed number (Figure 4.1.3).

Listing 4.2: Compression Implementation in C

for ( i = 0; i < arraySize/sizeof(float); i++) {

float temp = floatData[i]/(2*maxAbs) + 1.5;

twoByteDataPtr[i] =( (*((unsigned int*)&temp) ) >>7) & 0x0000FFFF;

}

This compression method is also implemented as a device function which is called

in kernels to compress data before it is written to the global memory. Memory writes

can be detected by assignment operators in the code. For writing compressed datasets

elements to memory in kernel codes, the right-hand side expression is passed to the

device function in code listing 4.3 prior to the writes, and the returned value which

is compressed is written to the memory. These function calls are added to the code

by the IPMACC code generator.

Listing 4.3: Compression Implementation in CUDA

__device__ __inline__ unsigned short compress_float(float fNum, float*

coef){

float temp;

temp = fNum*coef[2]+1.5;

return (unsigned short)(((*((unsigned int*)&temp))>>7)&0x0000FFFF);

}
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4.2.2 Decompression

In order to decompress a compressed number, we shift its bits to left so that it forms

23 or 52 bit mantissa for single and double precision floating points, respectively. The

new bits that fill the least significant part are a 1 followed by 0s. The reason why

we do so is that each compressed data represents a range of uncompressed floating

point numbers. If we fill all of the least significant bits with zeros, the decompressed

number would be the first number of the range. However, now that we start the least

significant part with 1, the decompressed number is the center of the range and is

probabilistically a better approximation of the original uncompressed number. After

filling the exponent part by the values which have been omitted in the compression

stage we have a floating point number in the range between one to two. By subtracting

the number by 1.5 the numbers range changes back to (-0.5,0.5). In the last step,

we multiply this by the data set maximum absolute value multiplied by two. The

result is an approximation of the original number. Figures 4.1.4 and 4.1.5 illustrate

the decompression of Pi. The white colored bits in figure 4.1.4 show the lost least

significant bits are replaced. Finally, figure 4.1.5 shows the fully decompressed Pi

number. The 8 bits (orange colored) are the ones in which decompressed Pi and the

original single precision Pi differ.

In order to optimize the decompression function we change the order of opera-

tions. Instead of performing subtraction by 1.5 and multiplication we distribute the

multiplication as indicated in equation 4.1. This way the compiler replaces the sub-

traction and multiplication instructions with a single fused multiply-add instruction

[19]. Hence, two constant values, named key1 and key2, are needed for decompression

as indicated in equation 4.2. We calculate them on the host at the compression stage

and copy them on the constant memory. There is a total of 64 KB constant memory

on a GPU device which is accessed through an 8KB cache on each SM. A 4-byte data
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in constant cache can be broadcast among threads with a very low latency.[3, 2]

2MaxAbs× (X − 1.5) = 2MaxAbs×X − 2MaxAbs× 1.5 (4.1)

= key1 ×X + key2 (4.2)

where

key1 = 2MaxAbs,

key2 = −3MaxAbs

Code listing 4.4 is the serial implementation of the decompression in C. It is

part of the IPMACC runtime API and decompresses the compressed datasets after

kernel execution and being copied back to CPU memory. Code listing 4.5 shows a

device function that performs the decompression on a 4-byte floating point number

compressed in a 2-byte format. In the compilation stage, all the memory accesses

which have a reference to a compressed dataset are replaced by a device function call.

Hence, before using the compressed data element, it is decompressed and returned

by this function. Then the returned value can be used in the rest of the kernel

code. All of these modifications are performed by the IPMACC code generator in the

compilation stage.

Listing 4.4: Decompression Implementation in C

for(i = 0; i< arraySize/sizeof(float); i++){

unsigned int temp = ((unsigned short*)twoByteDataPtr)[i];

temp = (temp<<7) | 0x3F800000;

floatData[i] = *((float*)&temp) * key[0] + key[1];

}
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Figure 4.1: Illustration of Compression and Decompression methods

Listing 4.5: Decompression Implementation in CUDA

__device__ __inline__ float decompress(void *ptr,int index,float* coef){

unsigned int temp = ((unsigned short*)ptr)[index];

temp = (temp<<7) | 0x3F800000;

return *((float*)&temp) * key[0] + key[1];

}

4.3 Runtime Library Extension

We extended the OpenACC runtime library in order to add our intended compres-

sion feature to the OpenACC model. To this end, we added new routines to the

library which handle the compression and decompression processes while transferring

a dataset. In fact the new routines are evolved versions of existing routines which

should be used in case of working with a dataset that is marked to be compressed.

The table 4.2 contains the introduced routines and their regular counterparts.
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Table 4.2: Runtime Routines for Compression
Regular Data Compressed Data
acc copyin acc compress copyin

acc present or copyin acc compress present or copyin

acc create acc compress create

acc present or create acc compress present or create

acc copyout acc decompress copyout

Our compression method is implemented in IPMACC framework, and the source

code is available on a GitHub repository[6]. The file named openacc.c in src directory

contains all the implementations of the new routines.
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Chapter 5

Methodology

5.1 Benchmarks

We use benchmark applications from Rodinia benchmark suit [9]. Rodinia bench-

mark suite consists of many scientific and engineering applications implemented for

heterogeneous platforms in CUDA and OpenMP. A third party OpenACC implemen-

tation is also available [1]. In addition to Rodinia benchmark sute, we designed a set

of microbenchmarks for further in detail investigations.

5.2 OpenACC Compiler

We use our framework, IPMACC[15], which is composed of a source to source compiler

and a runtime system. The compiler translates OpenACC to either CUDA or OpenCL

codes. Applications are executed over IPMACC runtime, which is built on CUDA

and OpenCL runtime (e.g. NVIDIA GPUs or AMD GPUs).
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5.3 Performance Evaluations

In order to validate the result correctness of programs compiled by our framework we

compare the outputs by the CUDA and serial versions. We considered three metrics

in performance evaluations; total kernel execution time, application run-time and

compression overhead time. We use nvprof [4] for measuring kernel execution time

while system time is used for the rest of time measurements through POSIX time

library. Reported results are based on average of multiple runs of the applications.

5.4 Platform

We evaluated our method using NVIDIA Tesla K20c as the accelerator. This sys-

tem uses NVIDIA CUDA 6.0 [3] as the CUDA implementation backend. The other

specifications of this system are as follows: CPU: Intel Xeon CPU E5-2620, RAM: 16

GB, and operating system: Scientific Linux release 6.5 (Carbon) x86 64.We use GNU

GCC 4.4.7 for compiling C/C++ files.
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Chapter 6

Experimental Results

In this chapter we show how our solution improves performance of different case

studies. Firstly, in order to have a better understanding of hardware architecture and

its impact on the efficiency of our method, we created a set of synthetic benchmarks.

In these microbenchmarks we investigated the efficiency of our compression method

on different data sizes and access patterns. We also compare the performance of

baseline OpenACC and compression-enhanced OpenACC implementations of some

real world applications. We use speedup as a metric to show the efficiency of our

compression method in this chapter. Equation 6.1 shows the definition of speedup.

Speedup =
NormalProgramExecutionT ime

EnhancedProgramExecutionT ime
(6.1)

6.1 Microbenchmarks

Prior to the real applications, we test our approach on some synthetic benchmarks.

First of all by running these simple test cases, we confirm that the time saved by

bandwidth usage reduction caused by data compression can outweigh its computation

overheads. These test cases also examine the efficiency of reduced-size data sets over
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different memory access patterns. Moreover, we investigated how data set size affects

the impact of the compression. By analyzing the results of these experiments we can

conceive the hardware behavior which helps us explain the results we get for real

applications.

6.1.1 Simple Data Copy

In the first microbenchmark we simply copy a chunk of data from one part of GPU

global memory to another part. Each thread is responsible for copying a single data

element. So threads bring the data into the cores, and then copy it back to another

address of the memory. We apply the compression clause on both source and des-

tination data sets, and measure how it affects performance. Code listing 6.1 is the

kernel region code used for this test case. We perform these experiments on differ-

ent data sizes to understand how the compression method’s efficiency changes over

different data set sizes. Figure 6.1 compares the kernel execution time of the normal

microbenchmark and its compression enhanced implementation. As the figure shows

data compression does not have a significant impact on the kernel execution time up

to a certain data size. But after that point there is a jump in the normal kernel time,

and we can see a huge gap between normal and compression enhanced kernel times.

At a data size twice the normal kernel jump we can see a change in the slope of the

line representing the compression kernel time. Although this change is not as drastic

as the normal kernel jump, it is caused by the same reason. Taking into account

the size of the data sets we figure out that the drastic changes happen when the size

of the data the kernel is dealing with, becomes larger than the capacity of the L2

cache. At the data copy stage, when the data is being copied from the host to the

device, it goes through the L2 cache. So a portion of data is cached during the data

copy stage. Although each data element is accessed only once in the kernel in this
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microbenchmark, cold misses happen only to the data which is not cached during the

copy stage.

To ensure that the L2 cache causes the observed phenomena, we tweak the bench-

mark, so that it copies an enough large dummy data into the GPU memory to flush

the L2 cache. By doing this all the kernel’s memory accesses result in cold misses.

The impact of the L2 flushing on the kernel execution time can be seen in figure 6.1.
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Figure 6.1: Simple Data Movement (each data element is a 8 bit double precision
floating point number)

Listing 6.1: Simple Data Movement

#pragma acc data pccopyin(dsrc[0:size]) pccopyout(ddst[0:size:min:max])

#pragma acc kernels present(dsrc,ddst) compression(dsrc,ddst) \

pcopyin(flush[0:10000000])

#pragma acc loop independent

for(int i=0;i<size;i++)

ddst[i]=dsrc[i];
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6.1.2 Simple Data Copy in Reverse Order

By increasing the data size, shortly after the L2 cache size, we no longer can see the

impact of L2 cache even in the test cases without the dummy data copy. From results

shown in figure 6.1 we can infer that the cached portion of data is never used, and

instead the global memory is accessed for all the memory requests. The uncached

chunks of data are accessed before the cached data in the L2, which evicts the initial

cached data in the L2 cache. To explain this behavior we assume that in the copy

stage the head of the data is copied first, and the tail is copied at the end. So if the

data size is less than the L2 cache size, the whole data is cached. But if the size of the

data, which is being copied, is larger than the L2 capacity, only a chunk of data with

the same size as the L2 remains cached. If we assume that the active threads access

the data set in the same order, we can explain the eviction of the initially cached

data.

To prove our assumptions we modify the previous benchmark so that threads

access the memory in the reverse order. For example if a thread was supposed to

access the ith data element in the previous benchmark, now it has to access the size-i

th data element in the modified benchmark. In figure 6.2 we compare kernel execution

times of the reverse ordered kernels. As can be seen, after the point that the data

set sizes become larger than the L2 cache size, the slope of the line increases. But

the execution time of unflushed kernels never reaches the flushed kernels, either in

compression enhanced kernels or normal kernels. It proves the assumption that the

threads which access the head of the data execute at beginning of the kernel. Our

modifications make the threads to start the kernel from data set’s tail which is cached

in the L2, and this prevents wasting the initial data in the L2 which is cached at the

copy stage.
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Figure 6.2: Simple Data Movement in Reverse Order (Each data element is a 8 bit
double precision floating point number)

6.1.3 Strided Access Pattern

In this microbenchmark we test compression enhanced kernels with strided mem-

ory access pattern. We try different cases with different stride lengths. Subsequent

threads access data elements distanced as much as the stride length, and copy it back

to the destination data set. We apply compression to both source and destination

data sets. Figure 6.3 compares the performance improvement achieved for different

stride lengths, over different data sizes. As can be seen as the stride length grows the

compression gain declines. The maximum speedup for each stride length happens at

the point in which the uncompressed data sets do not fit in the L2 cache, but still

the compressed data sets size is smaller than that.
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Figure 6.3: Strided Access Pattern (Each data element is a 8 bit double precision
floating point number)

6.1.4 Random Access Pattern

In the previous microbenchmarks the data was simply copied from one address to

another location in the memory, and the order of elements was preserved. In the

real world applications the data access patterns are not always as simple. To test our

compression method against complex memory access patterns we modify the previous

benchmarks so that each thread accesses a random data element in the source data

set, and copy it to ith location (i is the thread id). To implement this test case we

initialize an array of integers with random numbers between 0 to the source array size

minus one, and copy it to the accelerator memory. Threads should first read their

corresponding random number, and based on that number they pick up a random

element in the source array.

As can be seen in figure 6.4 up to a certain point there is no significant improve-

ment over the normal kernel time which indicates that most of the requested data is

found in the L2 cache. Our experiments also show that flushing the L2 cache does
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Figure 6.4: Data shuffling (Each data element is a 8 bit double precision floating
point number)

not have any negative effect on this high hit rate. Hence, we can infer that the data

is cached during the kernel execution by the pioneer threads, and the other threads

use the cached data. The reason why only a few pioneer threads can bring almost

all the data into the cache can be explained by the access pattern which is scattered

randomly all over the data set, and the fact that the smallest memory transaction

brings at least 32 bytes of data to the L2 cache. As long as the source data set is

smaller than the size of cache, accessing it does not cause cache eviction. The lines of

the L2 cache start being evicted only after the point that the size of the source data

set becomes larger than the L2 cache size. Then the hit rate decreases, and we can see

the execution time starts increasing with a steeper slope. As could be predicted this

change happens to the compression enhanced kernel when the number of elements it

is dealing with is twice greater than the number of elements which causes the slope

change to the normal kernel.
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6.2 Real World Benchmarks

6.2.1 Vector Product

Vector product is a simple benchmark in which corresponding elements of two vectors

are multiplied, and the result is written in a new array. Code listing 6.2 shows the

accelerator enhanced part of this benchmark. We applied compression to all vectors.

Listing 6.2: Vector Product

#pragma acc data pccopyin(a[0:SIZE],b[0:SIZE]) pccopyout(c[0:SIZE:MIN:MAX])

#pragma acc kernels compression(a,b,c)

#pragma acc loop independent

for (i = 0; i < SIZE; ++i){

c[i] = a[i] * b[i];

}

In figure 6.5 we report the kernel time improvement achieved by using data com-

pression. As the figure illustrates for the matrices with dimension sizes of 256 and

larger the compression can help improving the performance up to 2.07x. The reason

why we see a speedup of higher than 2x is that in the test case with vector size of

131072 elements, the L2 cache can not store all the vectors’ data. However, by using

the compression method the size of the vectors data shrinks to half which fits into

the L2 cache. Hence, compression kernel takes advantage of the low-latency L2 cache

accesses as well as less bandwidth usage.

6.2.2 Matrix Addition

Matrix addition is the operation of adding two matrices by summing the correspond-

ing entries. We apply the compression to both input matrices and also the result
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matrix. Code listing 6.3 contains the compression enhanced code we use. Since there

is no dependency between the iterations of the loops, we marked both of them with

independent clause. Therefore, each iteration is done by a single thread.

Listing 6.3: Matrix Addition

#pragma acc data pccopyin(a[0:SIZE],b[0:SIZE]) pccopyout(c[0:SIZE:MIN:MAX])

#pragma acc kernels compression(a,b,c)

#pragma acc loop independent

for (i = 0; i < SIZE; ++i){

#pragma acc loop independent

for (j = 0; j < SIZE; ++j){

c[i * SIZE + j] = a[i * SIZE + j] + b[i * SIZE + j];

}

}
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Figure 6.6: Matrix Addition Kernel Time Improvement

In figure 6.6 we report the kernel time improvement achieved by using the data

compression. As the figure illustrates for the matrices with dimension sizes of 256

and larger the compression can help improving the performance up to 1.63x.

6.2.3 Matrix Multiplication

Matrix multiplication is one of the basic operations in scientific computations. We

simply add OpenACC annotations to the serial code and apply our compression

method to the program. The computational phase in the serial code consists of three

nested for loops which are marked by the kernels directive to be executed on the

accelerator. Two outer for loops are also annotated by the loop directive so that the

work of each iteration is shared between threads. The independent clause, which is

used with the loop directive, is a hint to the compiler not to check for dependencies

between iterations of the loops. The inner for loop iterations are executed sequentially

by a single thread.

In figure 6.7 we report the kernel time improvement achieved over the baseline

OpenACC implementation by using the compression method. Compression becomes

highly effective on matrix dimensions of larger than 64. Figure 6.8 illustrates the total
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Figure 6.7: Matrix-Matrix Multiplication Kernel Time Improvement

Figure 6.8: Matrix-Matrix Multiplication Application Run-Time Improvement

application run-time improvement. Total run-time consists of memory allocations,

data initializations and transfers, compression time, and kernel time. We can see

that for matrices with dimensions greater than 4096 the compression overhead is

compensated. The breakdown of total baseline and compression-enhanced application

run-time is reported in figures 6.10 and 6.9. Kernel time constitutes a larger portion

of application run-time as the matrices sizes grow.

We also measured the error caused by compression. Different matrices composed

of random numbers of various ranges were generated to test the accuracy of the com-
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Figure 6.9: Compression-Enhanced MM Multiplication Breakdown

Figure 6.10: Baseline MM Multiplication Breakdown

pression method. We compared the results for our application and its compression-

enhanced version. The geometric mean of relative errors is 0.006% with the standard

deviation of 3−4%, and the maximum measured error is equal to 0.01%. These errors

are independent of input numbers ranges and size of input matrices.

6.2.4 HotSpot

HotSpot is commonly used to measure processor temperature under different archi-

tectural features and power consumptions. HotSpot performs a thermal simulation
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by solving a set of differential equations for a block of cells iteratively. Each cell’s

temperature in the computational grid is associated with the average temperature

value of the chip area it represents.

We perform our experiments on grid sizes ranging from 64 cells in each dimension

to 1024. This benchmark contains two data sets, cells’ temperatures and cells’ powers,

both stored in the double precision floating point format. We evaluated compression

applying it on both data sets. But we ended up using compression only on the powers

data set. We further discuss in the section 6.3. We used the compression clause on

the computation phase kernel. Figure 6.11 illustrates performance improvement for

the compression-enhanced kernel.

Figure 6.11: HotSpot Kernel Performance Improvement

In each iteration of the program the kernel is launched once. Figure 6.12 compares

the run-time of the application, simulating a grid size of 512, in the course of the first

700 iterations. The reported time includes data transfer times and device initializa-

tions. The compression overhead explains why the compression-enhanced application

run-time is initially above the baseline. The accuracy loss of the final result caused

by data compression is negligible. The maximum relative error is 10−8% after 4000

iterations.
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Figure 6.12: HotSpot Application Run-Time for First 700 Iterations

Listing 6.4: HotSpot Kernel

#pragma acc kernels present(temp, power, result)

compression(temp,power,result)

#pragma acc loop independent

for (r = 0; r < row; r++) {

#pragma acc loop independent

for (c = 0; c < col; c++) {

/* Corner 1 */

if ( (r == 0) && (c == 0) ) {

delta = (step / Cap) * (power[0] +

(temp[1] - temp[0]) / Rx +

(temp[col] - temp[0]) / Ry +

(amb_temp - temp[0]) / Rz);

} /* Corner 2 */

else if ((r == 0) && (c == col-1)) {

delta = (step / Cap) * (power[c] +

(temp[c-1] - temp[c]) / Rx +

(temp[c+col] - temp[c]) / Ry +
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(amb_temp - temp[c]) / Rz);

} /* Corner 3 */

else if ((r == row-1) && (c == col-1)) {

delta = (step / Cap) * (power[r*col+c] +

(temp[r*col+c-1] - temp[r*col+c]) / Rx

+

(temp[(r-1)*col+c] - temp[r*col+c]) /

Ry +

(amb_temp - temp[r*col+c]) / Rz);

} /* Corner 4 */

else if ((r == row-1) && (c == 0)) {

delta = (step / Cap) * (power[r*col] +

(temp[r*col+1] - temp[r*col]) / Rx +

(temp[(r-1)*col] - temp[r*col]) / Ry +

(amb_temp - temp[r*col]) / Rz);

} /* Edge 1 */

else if (r == 0) {

delta = (step / Cap) * (power[c] +

(temp[c+1] + temp[c-1] - 2.0*temp[c])

/ Rx +

(temp[col+c] - temp[c]) / Ry +

(amb_temp - temp[c]) / Rz);

} /* Edge 2 */

else if (c == col-1) {

delta = (step / Cap) * (power[r*col+c] +

(temp[(r+1)*col+c] + temp[(r-1)*col+c]

- 2.0*temp[r*col+c]) / Ry +

(temp[r*col+c-1] - temp[r*col+c]) / Rx
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+

(amb_temp - temp[r*col+c]) / Rz);

} /* Edge 3 */

else if (r == row-1) {

delta = (step / Cap) * (power[r*col+c] +

(temp[r*col+c+1] + temp[r*col+c-1] -

2.0*temp[r*col+c]) / Rx +

(temp[(r-1)*col+c] - temp[r*col+c]) /

Ry +

(amb_temp - temp[r*col+c]) / Rz);

} /* Edge 4 */

else if (c == 0) {

delta = (step / Cap) * (power[r*col] +

(temp[(r+1)*col] + temp[(r-1)*col] -

2.0*temp[r*col]) / Ry +

(temp[r*col+1] - temp[r*col]) / Rx +

(amb_temp - temp[r*col]) / Rz);

} /* Inside the chip */

else {

delta = (step / Cap) * (power[r*col+c] +

(temp[(r+1)*col+c] + temp[(r-1)*col+c]

- 2.0*temp[r*col+c]) / Ry +

(temp[r*col+c+1] + temp[r*col+c-1] -

2.0*temp[r*col+c]) / Rx +

(amb_temp - temp[r*col+c]) / Rz);

}

/* Update Temperatures */

result[r*col+c] =temp[r*col+c]+ delta;
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}

}

6.2.5 Nearest Neighbor

Nearest Neighbor (NN) finds the k-nearest neighbors of a point from a data set in a two

dimensional space. The serial version calculates distances to all the records and finds

the k nearest neighbors. The OpenACC version performs distance calculations on the

accelerator in parallel and the host’s master thread selects the k nearest neighbors.

The input data set consists of many records and is in fact an array of structures

(AoS). Each record is an object of a C struct which has two attributes, latitude and

longitude.

In order to maximize bus utilization, all the memory requests from a warp should

access neighbor bytes of memory. If each thread requests a 4-byte data and the

address of the first thread’s requested data is aligned, then all requests can coalesce

into one memory transaction. In this case the bus utilization is 100%. To this end, it

is highly recommended to change the arrangement of arrays of structures to structure

of arrays (SoA) in SIMD architectures. This enhances spatial locality significantly.

Our compiler provides a transparent and low overhead data transformation on

arrays of structures. This data transformation can be applied to an array while it

is being compressed. In the compression stage each floating-point object is copied

to a new smaller array after being compressed. Array transformation only changes

the location of the compressed data in the new array, and, therefore, adds a minimal

overhead to compression. Figure 6.13 demonstrates the kernel time improvement

using compression with and without array transformation. We can achieve 1.36X

speedup if we apply compression and data transformation. Since, the kernel time
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Figure 6.13: NN Kernel Time Improvement

constitutes an insignificant portion of the application run-time, we do not report

speedup over that.

We measured the geometric mean of errors through all the calculated distances

as 0.1% and the maximum relative as 1%. The standard deviation of the errors were

calculated as 3−1%.

Code listing 6.5 illustrates the code we use to apply the compression on the kernel

region.

Listing 6.5: Nearest Neighbor Kernel

#pragma acc kernels ccopyin(locations[0:numRecords])

copyout(distances[0:numRecords]) compression(locations)

#pragma acc loop independent

for (i=0; i<numRecords; i++) {

LatLong latlong = locations[i];

distances[i] = (float)sqrt((lat-latlong.lat)*(lat-latlong.lat)

+(lng-latlong.lng)*(lng-latlong.lng));

}
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6.2.6 Dyadic Convolution

Dyadic Convolution is an algebra operation calculating the XOR-convolution of two

sequences. The OpenACC implementation parallelizes output calculations, where

each thread calculates one output element. Although this implementation is fast

to develop, it exhibits a high number of irregular memory accesses. We applied

the compression clause on the main data set. Figure 6.14 shows the kernel time

improvement for different data set sizes, using compression. Code listing 6.6 illustrates

how we apply compression clauses on h Data data set.

Figure 6.14: Dyadic Convolution Kernel Time Improvement

Listing 6.6: Dyadic Convolution Kernel

#pragma acc kernels pccopyin(h_Data[0:dataN]) pcopyin(h_Kernel[0:kernelN])

pcopyout(h_Result[0:dataN]) compression(h_Data[0:dataN])

#pragma acc loop independent

for (int i = 0; i < dataNL; i++){

double sum = 0;

for (int j = 0; j < kernelNL; j++){

sum += h_Data[i ^ j] * h_Kernel[j];

}
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h_Result[i] = (float)sum;

}

6.3 Discussion

According to our evaluations applying compression clauses is effective in reducing

memory access latencies and traffic in many cases. However, there are a few cases

in which the compression or decompression overhead negates the improved memory

latencies, and therefore no speedup can be achieved. For instance, applying com-

pression on cells’ temperatures data set in HotSpot benchmark is not effective. The

reason is that each thread is responsible to calculate the new temperature of a cell

using neighbor cells temperatures. Therefore, a cell temperature may be accessed

by many threads. Once a block of data is accessed, it is copied to the caches so

that further accesses to that block hit in the caches. Using compression decreases

the memory latency of bringing data from memory. But it does not help in reading

data from the caches, and it only imposes extra compression and decompression over-

head. So except for the first thread that accesses a cell temperature, the others cause

overheard without any gain, so long the cell data is not evicted in the cache.
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Chapter 7

Conclusions

7.1 Conclusion and Future Work

In this thesis we introduced a set of OpenACC clauses to enable programmers to

accelerate their codes at very low development effort. By using these facilities pro-

grammers are able to make use of a transparent compression method implemented

in the compiler and the run-time system. They only need to mark the data sets by

these clauses, and accordingly they reduce the memory latencies by decreasing the

bandwidth usage. Although, our initial goal was decreasing the GPU global memory

bandwidth usage, later we figured out the advantages of data compression is not lim-

ited to that. Reducing the size of the data results in having more data elements in

the L2 cache which increases its hit ratio.

We applied our technique on a set of real world applications as well as the synthetic

microbenchmarks which we designed to study our compression method efficiency on

different memory access patterns. We achieve speedups up to 2X and 1.36X on GPU

kernels from synthetic and real world applications respectively.
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7.2 Future Work

There are many areas for further investigations as extensions of this work. One of

these areas is the compression method. We proposed a low overhead compression

method which is only applicable on floating point data type. There are many com-

pression methods with particular characteristics which can be applied on specific data

types. Each type of compression method is most effective, in terms of compression ra-

tio, speed and accuracy, on a specific data pattern. Another possible extension to this

work could be employing compression dedicated hardware. Compression dedicated

hardware units can help achieving higher performance by performing compression

and decompression calculations and not using the general purpose GPU cores. An

adaptive system which is able to detect different data patterns, and use the best com-

pression method dynamically during the program execution, can be a more robust

solution.

We have observed that in cases that the requested data is available in the cache

the access latency is not high enough to accommodate room for improvement. In

cases such as the temperature data set in HotSpot benchmark, which most of the

compressed data accesses hit in the cache, we did not observe any performance im-

provement. One challenging issue is that the cache is a transparent unit in the memory

hierarchy and we do not have control over its behavior. In such cases using shared

memory could be a solution. Data sets can be decompressed and copied to the shared

memory, after being fetched from memory and before being used for the calculations

in the threads. In this scheme the decompression is done once for each element of

the data set and extra overhead is prevented. Implementing this solution can be the

next step to cover more applications, and achieve a higher performance.
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