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ABSTRACT

By the end of 2016 surveillance and reconnaissance satellites will have been mon-

itoring Arctic-wide sea ice conditions for decades. Situated at the boundary between

atmosphere and ocean, Arctic sea ice retreat has been one of the most conspicuous

indication of climate change, especially in the two most recent decades. The 2001

annual minimum extent of Arctic sea ice marks the last year above the 1981 – 2012

long-term average extent. Ever since then only lower than average Arctic sea ice has

been observed at the end of each summer’s melt season. For more than a century

climate scientists have postulated that the darkening of the Arctic due to retreating

sea ice and therefore more exposed open ocean would be the consequence of global

warming. In the first decade of the 2000s the human influence on that warming in the

Arctic was indeed detected in observations and attributed to increasing atmospheric

greenhouse-gas concentrations. In this study we direct our attention to a potential

offsetting effect from other anthropogenic (OANT) forcing agents, mainly aerosols,

that has potentially out masked a fraction of greenhouse-gas induced warming by a

combined cooling effect. We acknowledge that multiple sources of uncertainty exist in

our method, in particular in the observed records of Arctic sea ice and corresponding

simulations from climate models.

No formal detection and attribution (DA) analysis has yet been carried out to

try to detect the combined cooling effect from aerosols in observations of Arctic sea

ice extent. We use three publicly available observational data sets of Arctic sea ice

and climate simulations from eight models of the Coupled Model Intercomparison

Project Phase 5 (CMIP5). In our detection and attribution study observations are

regressed on model-derived climate response pattern, or fingerprints, under all known

historical (ALL), greenhouse-gas only (GHG) and known natural-only (NAT) forcing

factors using an optimal fingerprinting method. We estimate regression coefficients

(scaling factors) for each forcing group that scale the fingerprints to best match the

observed record. From the scaled ALL, GHG and NAT fingerprints we calculate

the relative contribution of the observed sea ice decline attributable to OANT forcing

agent. Based on our DA results we show that the simulated climate response patterns

to changes in GHG, OANT and NAT forcing are detected in the observed records of

September Arctic sea ice extent for the 1953 to 2012 period.
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Chapter 1

Introduction

One of the best quantified aspects of climate change in the Arctic is the monitoring of

changes in the spatial extent of the sea ice with passive-microwave sensors on board

of satellite systems since 1978. Satellite observations of the Arctic show a negative

trend in sea ice concentration (SIC) in all seasons and all Arctic sub-regions except the

Bering Sea for the 1979 to 2012 period [63, 7, 70]. The minimum sea ice extent (SIE)

reached in September 2012 set a new low record following the earlier record set in

2007. All years past the year 2001 have SIE minima below the historical climatological

mean conditions for the 1981 - 2012 period. According to the National Snow and Ice

Data Center (NSIDC) higher than the long-term average Arctic temperatures have

recently hampered new sea ice formation during the winter of 2015 resulting in the

lowest ever observed annual maximum sea ice extent in March, 2016. The September

SIE of 2016 was the fifth lowest in the satellite era and marks the 15th successive year

with lower than average sea ice extent in the Arctic [9, 78]. Satellite observations of

the modern era (1979- present) show a downward trend in spatial sea ice extent in

all seasons - smaller in winter and larger in summer [63]. The September linear trend

of Arctic ice decline stands at −12.4% per decade over the satellite record [69]. The

decrease in spatial extent is accompanied by thinning of the sea ice [58, 38, 33, 35].

Thinner sea ice is affected more strongly by air- ice-ocean interaction allowing easier

ice break-up, enhanced ice circulation, drift speed, and ice export rates out of the

Arctic basin though the Fram strait [34]. The lateral shrinking and vertical thinning

consequently lead to an overall loss in Arctic sea ice volume [7, 4].

Measurements of atmospheric aerosols imply a net negative radiative forcing due

to increased burdens of atmospheric sulphate aerosols offsetting a fraction of recent

global warming due to increased greenhouse-gas (GHG) concentration that would
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have occurred otherwise [66]. Sulphur dioxide emissions, the aerosol’s precursor gas,

increased in the 1960s, 1970s and 1980s and then again in the 2000s [65, 66]. The

combined effect from direct and indirect radiative effects associated with sulphate

aerosols is a net cooling effect offsetting a fraction of the GHG induced warming over

the past few decades [61, 56]. Indirect warming from decreasing aerosol burden after

the 1980s and 2000s and continuously increasing greenhouse- gas induced warming

have resulted in a net warming effect in the Actic [15, 17, 66, 11, 13, 46].

Based on climate model simulations conducted for the third phase of the Coupled

Model Intercomparison Project (CMIP3), previous studies detected the relative an-

thropogenic (ANT) influence in the observed decline of Arctic SIE in the presence of

natural (NAT) influences, mainly changing solar and volcanic activity, and internally

induced climate variability (IV) [79, 20, 43, 27].

The concentration of tropospheric aerosols has increased since year 2000 [61, 66,

11]. Hence, it could be the case that part of the GHG-induced Arctic sea ice response

is masked by this offsetting effect from tropospheric aerosols. It also implies that

any future reduction in global aerosols emission could result in additional Arctic

sea ice loss due to reduced aerosol cooling [13] and that the political declaration of

intent to reduce global GHG emissions might not have the full anticipated effect. So

far no formal detection and attribution (DA) study has addressed the question of

a possible offsetting effect from other anthropogenic (OANT), mainly tropospheric

aerosols, forcing and if it can be detected in the observed record of Arctic sea ice

extent. In this DA study we follow up on this question using extended data records

of the Arctic sea ice observations (1953 to 2012) that combine satellite observations

and operational sea ice charts from multiple sources. We use climate simulations from

eight models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) under

different climate forcing combinations.

In Chapter 2 the DA framework is explained in more detail by introducing the

underlying statistical model and a brief description of available observations of Arctic

sea ice and how they are constructed, followed by some remarks on sea ice mod-

elling and aspects of using multi-model ensembles from intercomparison projects like

CMIP5. Chapter 2 closes with a brief section on a perfect model experiment (PME)

to study the sensitivity of the DA results to different estimations of internal climate

variability. In Chapter 3 results from both the PME sensitivity test and the DA study

on the offsetting effect from OANT forcing itself are presented. This is followed by a

discussion of results and some concluding remarks in the final Chapter 4.
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Chapter 2

Climate Change Detection and

Attribution

To study the relative contribution of influences from natural (NAT), greenhouse-gas

(GHG) and other anthropogenic (OANT; predominantly aerosol) forcing on the ob-

served Arctic sea ice decline from 1953 to 2012 we use a detection and attribution

(DA) technique referred to as regularized optimal fingerprinting (ROF) [22, 1, 53, 54].

This technique uses total least squares accounting for noise from internal (unforced)

climate variability in both observed and simulated climate response. The ROF ap-

proach has been previously applied to changes in observed Arctic air temperatures

and snow cover extent decline [46, 47]. In a 3-signal (GHG, ALL and NAT) ROF

setup we regress the observed time series of Arctic SIE onto model-simulated re-

sponse patterns (fingerprints). The regression coefficients scale the model-derived

fingerprints (scaling factors) to best match the observations. If a scaling factor is

positive and its 90% confidence interval (CI) is inconsistent with zero the associated

fingerprint is said to be detected in observations. Scaling factors excluding zero and

including unity indicate good agreement between observed and model-simulated cli-

mate response whereas negative scaling factors with large uncertainty bands would

indicate a mismatch between simulated and observed climate response. Hence, if a

scaling factor and its CI is consistent with unity and inconsistent with zero it maybe

possible to attribute part of the observed change to the associated climate forcing.

The relative contribution of OANT forcing agents has to be calculated from scal-

ing factors corresponding to GHG, ALL and NAT fingerprints derived from available

CMIP5 simulation under these forcing experiments (see Tab. 2.1). The sixth gen-
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Table 2.1: List of CMIP5 model and corresponding ensemble size under GHG, ALL
and NAT forcing

CMIP5 model GHG ALL NAT
BCC − CSM − 1− 1 1 3 1
CanESM2 5 5 5
CNRM − CM5 6 10 6
GISS − E2−H 5 6 5
GISS − E2−R 5 6 5
HadGEM2− ES 4 3 4
IPSL− CM5A− LR 3 4 3
NorESM1−M 1 3 1

eration of CMIP, i.e. CMIP6, will include simulation under OANT forcing so that

scaling factors can be estimated directly from corresponding simulation [52, 16].

[46] identified that a large portion of GHG induced Arctic warming has very

likely been offset by the combined cooling effect of OANT forcing agents, mainly

tropospheric aerosols. Any future decrease in atmospheric aerosol burden in the 21st

century could therefore result in additional warming in the Arctic, which leads to an

additional reduction in sea ice extent [13].

Following up on previous findings in this study we investigate if GHG-induced

Arctic sea ice decline has been offset by the combined cooling effect of OANT forcing

in a similar manner. We compare three available records of observed Arctic sea ice

conditions with simulations from eight climate models using ROF [22, 1, 53, 54].

In the following sections detection and attribution, Arctic observations, the CMIP5

model simulation and assumptions regarding the temporal structure of internally gen-

erated climate variability are described in more detail.

2.1 Detection and Attribution on Arctic Sea Ice

Detection and attribution of Arctic sea ice change and its effects on the global climate

contributes to our understanding of the physical scientific basis of climate change. In

the context of Climate Change detection and attribution studies detection is the step

of showing that a certain index of the climate system has changed over a given time

in a statistical sense [25, 4, 83].

For example [43] detected human induced climate change in Arctic sea ice ob-

servations when analysing model data that included anthropogenic climate forcing.
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The observations could not be explained by model simulation of the climate under

natural-only forcing. Hence, the change signal was not detected in the latter case.

The detection step in the DA formalism involves the computation of regression

parameters, or scaling factors, that adjust model simulated response patterns under

a given forcing (i.e. fingerprints) to best match the observation. If a scaling factor

of a fingerprint is significantly different from zero and positive, then that signal is

detected in the observations. Negative scaling factors do not allow for a physical

interpretation even if the associated confidence interval excludes zero. However, it

might be an indication that important real world processes are not well captured in

the model simulation or fingerprints from other forcings need to be considered in the

DA study as well.

The second step in the DA framework is attribution that assesses the relative

contributions of multiple plausible (i.e. in a known physical sense) change signals

by assigning weights (scaling factors) to the different change signals and assigning

statistical confidence [25]. If a fingerprint exceeds the observed signal (e.g., due to

missing moderating forcing components) the analysis may produce a scaling factor

less than unity to account for that mismatch and vice versa - if the simulated change

is too small.

To increase confidence in the DA results it is common practice to use output

from numerous climate models in an multi-model-ensemble (MME) setting instead of

analysing single models individually. In the following we present the main DA results

for the MME first, before discussing findings for individual climate models.

2.1.1 Multi- pattern Fingerprint Method for Detection and

Attribution

In this DA study observed changes in Arctic September sea ice extent are attributed

to the relative contribution of three climate forcings: GHG, NAT and OANT. The DA

framework uses an adaptation of the total least-squares based optimal fingerprinting

method [22, 23, 1].

Standard optimal fingerprinting consists of the generalised linear regression model

yi =
l∑

i=1

βixi + ε (2.1)

where yi is the vector of the observations, xi is the ith response pattern under
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external climate forcing and βi are corresponding unknown scaling factors. The ε

term denotes internal climate variability. The model is then used to estimate βi

(scaling factors) to scale the amplitude of the response patterns to best match the

observations. It is assumed that ε is a Gaussian random variable with covariance

C = Cov(ε). The second assumption is that the climate response to multiple forcings

is additive [18, 53].

Climate Change DA using Ordinary Least Square (OLS) approaches assume that

the vector of the forced climate response xi is perfectly known. In contrast, the Total

Least Squares (TLS) approach accounts for uncertainties in both observations and

climate model simulations. Hence both vectors yi and xi are not perfectly known and

are represented as

yi = xiβ + εyi (2.2)

xi = xi + εxi
(2.3)

where εyi is error in the observed record (i.e., internal climate variability) and

εxi
is the unknown component in the climate model simulation. Furthermore, it is

assumed that

εyi ∼ N (0,Σyi) (2.4)

εxi
∼ N (0,Σxi

) (2.5)

assuming that εyi − εxi
is i.i.d. N (0,Σ). Both estimates of the covariance matrix

of internal variability Σyi and Σxi
are estimated either from unforced control simula-

tions or from transient ALL forcing runs after the ensemble mean response has been

removed.

Here we use a TLS- based fingerprinting method to estimate scaling factors for

simulated GHG-, OANT- and NAT- induced response patterns to best match the

observed records of Arctic September SIE. This method involves the estimation of

the covariance matrix of internal climate variability C, the estimation of the scaling

factors βi, the associated uncertainty estimation and a consistency test on the regres-

sion residuals. Both steps require the matrix C to be known. In reality this matrix

is not known exactly and has to be estimated. This estimate Ĉ is constructed from
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unforced control simulations [26, 24, 67, 43, 47]. The estimation of a well-conditioned

covariance matrix Ĉ is key in the DA formalism.

Similar to the approach used by [46] based on [23, 75, 1] we derive scaling factors

for GHG, OANT and NAT from simulations under GHG, ALL and NAT. First the

regression is carried out for the available response patterns to estimate scaling factors

for GHG, ALL and NAT. In an second step response to ALL forcing in the initial

regression model (Eq. 2.6) is decomposed assuming linear additivity

SIEobs. = β1SIEALL + β2SIENAT + β3SIEGHG + ε (2.6)

and SIEALL is substituted with

SIEALL = SIEGHG + SIENAT + SIEOANT (2.7)

Then the scaling factors for GHG, OANT and NAT can be written as

βGHG = (β1 + β3), βNAT = (β1 + β2), βOANT = β1 (2.8)

If the associated scaling factor of a response pattern is statistically significantly

different from zero, then that signal is detected in the observations. If the scaling

factor is close to unity it means that the observed change is consistent with the es-

timated model response to ALL, NAT and GHG forcing respectively. Discrepancies

between the simulated and observed signal amplitudes may also indicate the existence

of physical processes that are not well resolved in the models leading to structural

biases between observations and simulations [45, 1].

2.1.2 Regularized Optimal Fingerprinting

As for other climate change DA applications, in this study one of the key difficulties in

applying the fingerprint method is the computation of the the inverse of the covariance

matrix of internal variability C. Its estimate from control data might not be invertible

(i.e. singular) in the case where the available number of control run years for the

estimation of Ĉ, n, is smaller than the number of data series from control runs p. In
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this case a common practice is to reduce the dimension of the detection space. This

can be achieved by making use of an empirical orthogonal function - (EOF) truncation

of C. This allows for the computation of a pseudo- inverted version of the variance-

covariance matrix of internal variability, namely the Moore-Penrose pseudo invert,

Ĉ†q where q is the truncation parameter and dimension of the reduced detection space

[21, 43, 51, 28].

One unfavourable property of a Moore-Penrose pseudo-inverse of the covariance

matrix is that smallest, or high order, eigenvalues of Ĉ†q are underestimated whereas

the biggest, or low order, eigenvalues are over-estimated. These errors are amplified

when computing the inverse of Ĉ†q which can result in an ill-conditioned covariance

matrix [51, 53].

In this study we use a regularization technique to ensure that the covariance ma-

trix of internal variability is invertible. We use two different dataset to estimate

internal variability. In both cases the regularized estimates has better properties (i.e.

more accurate and lower sampling variability) [36, 51].

The main thrust behind this regularization technique is to find a covariance ma-

trix estimate ĈI , also known as the Ledoit estimate [36] of the form

ĈI = γĈ + ρIp (2.9)

where Ip is the p x p identity matrix and γ and ρ are real numbers. Multiple

methods to find the relevant estimators γ and ρ exist. We follow the method described

in [51] (Appendix A1-A8 of that study) based on the initial method by [36].

Adding a scaled version of I has the benefit that the smallest eigenvalues in ĈI are

now overestimated by decreasing the relative weight of high order eigenvalue providing

a more stable DA algorithm when computing the inverse of ĈI . Due to the use of

this regularisation scheme this DA algorithm is referred to as Regularized Optimal

Fingerprinting [53, 54].

After estimating the signal amplitudes the last step in ROF is to conduct a residual

consistency test (RCT) to check if the estimated regression residuals are consistent

with the climate model noise represented by a second estimate of the covariance

matrix of internal variability. The second set is constructed by dividing the initial
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full set of available control run segments into half. After removing all externally-

forced signals in the regression procedure the regression residuals should be consistent

with internal variability. The computation of the RCT test statistics involves a F-

test between ratios of variances of the regression residuals and estimated internal

variability. If the test statistic produces p-values between 0.05 and 0.95 (90% CI) the

test is passed [1, 59]. Alternative version of the RCT procedure adopted for ROF

that does not rely on parametric distributions is presented in [53].

Passing the RCT indicates that the overall assumptions of the statistical model

hold. The test fails if at least one underlying assumption is violated, e.g. if the esti-

mated internal variability is too low or there is no linear relationship in the response

pattern. A detailed description of the RCT is given in [1] and [53].

2.1.3 Sea Ice Observations and Models

Due to the extensive size and inhospitable nature of the Arctic, spatially complete

observations of sea ice concentration only began with the satellite era. However,

multiple records of local SIC condition and ice edge position exist for the pre-satellite

era from 1953 onward. They come from various sources with different resolutions

and various spatial and temporal coverage. Global coupled climate model (GCM)

simulation of sea ice under ALL, GHG and NAT forcing conducted for CMIP5 end

in the year 2012 [69]. In this study we use time series of Septmeber Arctic SIE

representing the annual minimum for the 1953 to 2012 period. For this period both

observations and model simulations exist. For simulations and observed records of

SIC, SIE is calculated as the area sum of grid cells with at least 15% SIC. The

observational record produced by [48] consists of values of monthly mean SIE values.

We are using time series of the annual Arctic sea ice minimum represented by the

mean September SIE as climate diagnostic.

We use three different publicly available observational data sets that all differ in

processing of the raw remote sensing data or the assimilation techniques of data from

various sources.

Two common procedures to derive sea ice products from the raw remote sens-

ing data are the The National Aeronautics and Space Administration (NASA) Team

sea ice algorithm [73] and the NASA Bootstrap algorithm [6]. In both cases sur-

face brightness temperature measurements by the Special Sensor Microwave/ Imager

(SSM/I) instrument are mapped onto discrete grids from which first- and multiyear
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ice concentrations are calculated. The sum of both results in the overall SIC that is

used to calculated SIE.

For the pre-satellite era various sources of information on the Arctic sea ice con-

dition exist in the form of operational charts that mapped the ice edge position for

navigation purposes. Although often locally and temporally constrained, operational

sea ice charts provide one of the few archives of pre-satellite sea ice records. Their

quality is not only limited by the areal coverage provided but also subject to the

expertise of the navigation analyst who mapped the local sea ice condition during a

cruise [62]. Errors in ice edge location in the The Arctic and Antarctic Research In-

stitute (AARI) charts issued before 1998 vary from 2− 10km [50] to 50km [39]. This

is tolerable for our approach given that the calculation of the Arctic-wide September

mean SIE is a large simplification and the effect of mapping inaccuracy is considered

marginal compared to that.

In this study we make use of three available records of Arctic sea ice that were

extended backwards into the the pre-satellite era by combining multiple data sources

of different resolution, spatial and temporal coverage. For times and regions where

observations from multiple sources exist, researchers applied a ranking scheme to

determine the most accurate one [81]. We do not extend our study into years prior

to 1953 as Arctic-wide coverage can only be achieved by making use of climatological

infill where data gaps occurred.

In 2016 Walsh and Chapman released an updated version of Gridded Monthly Sea

Ice Extent and Concentration fields from 1850 onward (Version 1.1), WC hereafter

[10]. The WC compilation is the only Arctic-wide record under investigation that

incorporated sea ice information in the Russian sector from naval operational ice

charts provided by the The Arctic and Antarctic Research Institute (AARI) covering

1933–2006 [80, 5, 39, 81].

The second set of sea ice observations is the newest update of the Hadley Centre

sea ice and sea surface temperature data set (HadISST.2.2.0.0), HadISST2 hereafter.

The data for the 1953 to 1978 pre-satellite era rely mainly on an earlier version of WC

that did not yet include the AARI data. Between 1995 to 2007 National Ice Centre

(NIC) sea ice charts were used as reference to adjust SIC biases between the different

data sources [76].

A third data set that came to my attention provides a new time series of September

Arctic sea ice extent from 1935 to 2014 [48]. The authors, Piron and Pasalodos (PP),

include additional data for the Siberian sector of the Arctic that have not been used
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previously in the existing Arctic wide time series. This dataset also includes an

adjustment of a discontinuity in the sea ice record at the 1978 – 1979 boundary

marking the switch from single- to multichannel microwave sensors on board the

Nimbus satellite systems [41, 48].

It is striking that the trend of Arctic SIE in September is −12.9% per decade

for most parts of the satellite period considered here (i.e. 1979 to 2011), which is

nearly double the trend from 1953 to 2011 of −6.8% per decade relative to the 1981

to 2010 mean [41]. The combination of various data sources cannot guarantee perfect

consistency across the entire analysis period. The consistency within the observed

records is limited by the the lack of spatially complete data, data of different quality

and resolution, and human judgement within individual products such as sea ice

charts. The interpretation of the fact that the doubling of the declining rate coincides

with the transition between the pre- and post-satellite era would deserves additional

investigation.

2.1.4 Sea Ice Modelling

Besides Arctic sea ice observations we analyze simulations from eight CMIP5 climate

models covering the 1953 – 2012 period under historical GHG forcing, natural changes

in NAT and under the combined effect of ALL forcing included in the models. In some

cases the historical ALL simulation ended in 2005 and we extended these to the year

2012 with ALL forcing extended simulations provided by the associated modelling

centres or with Representative Concentration Pathway 4.5 simulations (RCP4.5) rep-

resenting a moderate assumption of additional radiative forcing of 4.5Wm−2 by the

end of the 21st century relative to the 1750 reference. An overview of models used in

this study is shown in Table 2.2.

Model Atmosphere Land Ocean Ice ALL NAT GHG
BCC-CSM1.1 BCC-AGCM2.1 CLM3 MOM4 GFDL SIS 3 1 1

CanESM2 AGCM4 CLASS NCAR CanSIM1 5 5 5
CNRM-CM5 ARPEGE ISBA NEMO-OPA GELATO 10 6 6
GISS-E2-R GISS GISS Russel OM Russel OM 6 5 5
GISS-E2-H GISS GISS HYCOM HYCOM 6 5 5

HadGEM2-ES HadGAM2 TRIFFID HadGOM2 n/a 3 4 4
IPSL-CM5A-LR* LMDZ ORCHIDEE NEMO-OPA NEMO-LIM 4 3 3

NorESM1-M CAM4 CLM4 MICOM-HAMOCC CICE 3 1 1

Table 2.2: Overview of eight selected GCMs and their atmosphere, land, ocean and
sea ice sub-models. Also the number of available simulations under historical (ALL),
natural-only (NAT) and greenhouse-gas (GHG) forcing. Asterisk denotes RCP4.5
extension. List of acronyms is provided by [60, and references therein]
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Despite providing sufficient simulations from 1953 – 2012 under GHG, NAT and

ALL forcing the CSIRO-MK-360 model was excluded from all analysis because of its

unrealistic Arctic sea ice simulation [40, 77]. The CSIRO-MK-360 model simulates

excessive sea ice in the winter month due to a filter parameter that regulates spurious

ice-ocean fluxes between the ocean and sea ice models. It decreases the ice-ocean

stress which increases the ice formation and slows down the decline of the ice cover

throughout the 21st century [19]. Its outlying characteristic compared to the majority

of the CMIP5 model population is shown in Figure 2.1.

Figure 2.1: September Arctic sea ice extent (5-yr running mean) as simulated by
29 CMIP5 models. The historical runs are merged with the RCPs (representative
concentration pathways RCP 8.5) Members of the same model, if more than one, are
represented by thin lines. Individual models (or the mean of all their members,) are
represented by thick lines. The multi-model mean (equal weight for each model) is
depicted by the thick orange line. Observations are shown as the thick black line.
The horizontal black line marks the 1 million km2 September sea ice extent threshold
defining ice-free conditions in this paper. Modified after [40].

A noticeable structural difference among the eight CMIP5 models exist in the

way their aerosol schemes are designed (Table 2.3). NorESM1-M is the only model

that includes time varying ozone in the GHG simulations in contrast to all other

climate models that only include well-mixed greenhouse-gases. The climate response

to changes in ozone concentration is therefore included in the GHG simulations. This

has the negative effect that the ozone signal will get subtracted in the approach to
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derive the OANT response (see Eq. 2.7).

CMIP5 Model List
Model Oz SD SI BC OC LU SS Ds MD AA
BCC-CSM yes yes no yes no no yes yes no no
CanESM2 yes yes yes yes yes yes no no no no
CNRM-
CM5

yes yes yes yes yes no no no no no

GISS-E2-
H

yes yes yes yes yes yes no no no no

GISS-E2-R yes yes yes yes yes yes no no no no
HadGEM2 yes yes yes yes yes yes no no no no
IPSL-
CM5A

yes yes yes yes yes yes yes no yes yes

NorESM no yes yes yes yes no no no no no

Table 2.3: Eight selected CMIP5 models and processes included in the calculation
of the other anthropogenic (OANT) response resolving relative radiative effects from
Ozone (Oz), effects from sulphate aerosols, direct (SD) and indirect (SI), black carbon
(BC), organic (OC), changes in land use (LU), sea salt (SS), dust (Ds), mineral dust
(MD) and anthropogenic aerosols (AA). Modified after [74] and [8].

We calculate the CMIP5 multi-model ensemble (MME) mean response by giving

equal weight to each model thereby not accounting for notable differences in individual

ensemble sizes, i.e. largest: 10, smallest: 1 (see Fig. 2.2). Figure 2.2 shows an

overview of the model simulated Arctic sea ice response. Visible spikes of increased

SIE in ALL and NAT simulations correspond well with increasing sulphate (SO4)

burden in the stratosphere after the three most recent major volcanic eruptions from

Mt. Agung (1963), El Chichón (1982) and Mt. Pinatubo (1991) indicating that the

CMIP5 sea ice models are able to simulate temporary weakening of the spatial sea

ice decline due to aerosol cooling. The SIE response to OANT forcing is derived

by subtracting the signals from GHG and NAT from simulations under ALL forcing

(Figure 2.3). Since most CMIP5 model provide a larger number of historical ALL

forcing simulations than under GHG and NAT forcing, the overall ensemble size of

every climate model is reduced to the smallest shared ensemble number under all

three forcing experiments. Figure 2.3 illustrates that in first half of the observational

Arctic sea ice record the GHG and OANT response are working in opposite direction.

The linear trend of Arctic sea ice extent in response to OANT forcing is positive for

the 1953 to 2012 period. When considering only the satellite era (1979 to 2012) the

linear trend of Arctic sea ice extent is negative (−0.004[106km2a−1]). Therefore we
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include pre-satellite observation to our DA analysis from times where the GHG and

OANT response were less collinear than for the majority of the satellite record.

NAT

GHG

ALL

WC

HAD

PP

Mt. Agung
1963

El Chichon
1982

Mt. Pinatubo
1991

Figure 2.2: Mean September Arctic sea ice extent (lines) from 1953 to 2012 across
all members from eight CMIP5 model ensembles under ALL,GHG and NAT forcing
and ± one standard deviation (envelope) and the 1981 - 2010 sea ice anomaly from
three available observed datasets (WC, HadISST2, PP).

Spatial changes of the sea ice can be monitored quite readily by the means of

satellites. The sea ice pack can undergo sizeable volume losses that would not be

apparent when only regarding SIE as index. Spatial SIE and SIT can be utilized

to estimate the total volume of the ice pack. Changes in sea ice volume are mainly

driven by two sets of processes. The first consists of thermodynamic processes that

modulate the rate of heat exchange at the atmosphere- ice and the ice- ocean interfaces

as well as the ice internal heat fluxes. Thermodynamic processes mainly control the

amount of vertical and lateral ice growth and melt. Dynamic processes, in contrast,

predominantly redistribute ice mass by either horizontal and vertical transport due

to wind or ocean currents. They also have the potential to cause deformation of the

ice by changes in internal stress. The GCMs participating in CMIP5 resolve relevant

components of the climate system in their model components (e.g. atmosphere, land,

ocean, ice) but structural differences in these components exist between the models
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Figure 2.3: Mean September Arctic sea ice extent (lines) from 1953 to 2012 across all
members from eight CMIP5 model ensembles under GHG, NAT and OANT forcing
and ± one standard deviation (envelope) and the 1981 - 2010 sea ice anomaly from
three available observed datasets (WC, HadISST2, PP).

(Tab. 2.2).

2.2 Arctic sea ice variability

Observed variables of the Earth system are subject to natural internally generated

variability. This IV arises from the coupled, complex and highly non-linear nature of

the Earth system e.g. from atmospheric and oceanic turbulence and various feedback

mechanisms. Large ensembles (LE) of sea ice simulations with different initial con-

ditions provide an unprecedented large sample of IV of the underlying climate [72].

The first LE experiment considered here is the CESM Large Ensemble Project. This

35-member LE is produced with CESM1(CAM5) under historical ALL forcing for the

1920 to 2005 period. Thereafter the Representative Concentration Pathways assum-

ing an additional radiative forcing of +8.5W/m2 by the year 2100 (RCP8.5) is used.

It lies in the nature of GCMs such as CESM and CanESM2 that small perturbations

in the initial conditions grow rapidly over time [57]. The spread in the LE is gener-
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ated using round-off differences in the initial conditions of the atmospheric state[30].

The second LE experiment was conducted by the The Canadian Centre for Climate

Modelling and Analysis (CCCma) using the CanESM2 model under historical ALL

forcing. Five initial ensemble members were each branched in the year 1950 into ten

descendent runs, producing a 50-member LE. The ensemble spread in all members

can then be taken as a measure of IV. To study the sensitivity of the DA results to

the choice of how internal climate variability (IV) is prescribed in the ROF approach

we estimate two separate sets of climate variability, IV1 and IV2.

The first estimate of internal variability, IV1 is constructed from 408 non-overlapping

segments of ∼ 24, 500 years of control simulations carried out by 54 CMIP5 models

under constant pre-industrial, i.e. pre-1850, (piControl) climate forcing. Figure 2.4

shows the conditional relationship between mean sea ice extent and the sea ice vari-

ability (i.e. standard deviation in this case) for the CMIP5 models. Despite possible

model interdependency within the CMIP5 population [60] no obvious clustering of

model subgroups seems apparent. Models that have the highest relative weight (in

Fig. 2.4, longer simulations indicated by darker colors) when estimating IV from their

control simulations are spread out quite evenly in the full CMIP5 population.

The second set, IV2 comes from simulation under transient ALL forcing from two

large ensemble experiments. Comparing two structurally different datasets of IV al-

lows us to test the influence on the DA results when using a sample estimate of IV that

does not account for transient non-stationary changes in response to anthropogenic

forcing (IV1) in contrast to a sample estimate of IV from transient ALL forcing runs

(IV2). The second set of non-stationary internal variability (IV2) is produced by

centering all 85 LE members by subtracting the LE mean response to ALL forcing

(see Fig. 2.6). Figure 2.5 illustrates the emergence of increasing internal variabil-

ity in transient LE runs in comparison to control simulations with constant forcing

from the same two climate models. The nonstationarity emerges in the first three

decades of the 21st century indicated by variance ratios diverging from a horizontal

uniform band. For CanESM2 it is striking that the variance ratios in the second half

of the 20st century are consistently lower than unity. The overall ratio between the

mean variance across all CanESM2 LE members and variance from a corresponding

CanESM2 control run (1,096 years) is only 0.77 for the 1950 to 2000 period indicating

higher variability in LE historical ALL forcing simulations than in the control simu-

lation under pre-industrial forcing. Since the mean Arctic SIE in September for the

1950 to 2000 period is similar (i.e. 5.17 million km2 for CanESM2 LE and 5.06 million
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km2 CanESM2 control run) the difference in variability may not be explained by the

conditional mean SIE alone and must arise in the simulations itself. It may well be

that IV is different under weaker climate forcing in pre-industrial control simulation.

A thorough discussion of the possible reasons for this behaviour would be beyond the

scope of this thesis. However, some considerations of model and observation biases

and comparing metrics on simulations from CanESM2 and CanESM2 LE are given

in [40, 42, 64, 3].

2.2.1 Perfect model experiment

In order to study sensitivity of DA results to non-stationary IV a perfect model

experiment (PME) is carried out. Using only one model in a PME has the benefit

of reducing the influence of uncertainty associated with differences in model forcing,

observational uncertainty and structural model differences inherent to multi-model-

ensembles like CMIP5.

In the PME a one- signal test case is created where the DA algorithm is used to

detect a fingerprint derived from all-but-one LE members in ”observations” which are

represented by the remaining one member. First, similar to fingerprinting methods

from other DA studies [44, 59, 49, 46, 47], a time- adjusted version of IV1 is used (i.e.

matching the length of the DA analysis period). Then the experiment is repeated

using time- adjusted versions of IV2. The standard deviation of control simulation

is 0.357[106km2] for CanESM2 and 0.270[106km2] for CESM1 which falls close to the

mean standard deviation from all 54 CMIP5 models (0.346[106km2]) that contribute

simulations to estimate IV1. Arguably, it would be a fairer comparison if IV1 would

be estimated from control simulations from CanESM2 and CESM1 only. However,

this would provide only a fraction of available control run segments compared to

the full CMIP5 archive to estimate IV. Also, using control simulations from multiple

CMIP5 models to estimate IV is common practice in the recent DA literature [29, 32,

14, 59, 82, 46]. Here, we assess this practice and its suitability for DA on Arctic sea

ice extent. The PME is repeated for four different analysis periods to document if

and when the DA results are effected by the choice of the estimate of IV. Difference

in the DA results are manifested in the scaling factors and their 90% CI as well as

the success rate of the RCT. The expectation is that in a PME the failure rate for

the RCT (using a 90 % CI) is about 10% of the total.
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Figure 2.5: Ratios of variance between simulations under historical ALL (1950 – 2005)
and RCP8.5 (2006 – 2100) forcing and corresponding unforced control simulation
with constant pre-industrial forcing for CanESM2 LE (left) and CESM LE (right).
After removing the LE mean response to ALL forcing from every individual ensemble
member a 5-year rolling window at every simulation year is summed up across all
available LE member to create a sample of 250 (175) for CanESM2 (CESM) simulation
years that is representative for a given timestep. From that sample of representative
years the variance is calculated. The variance for each set of simulation years is
then divided by the total variance calculated from a corresponding control run from
the same climate model. That way we the obtain variance ratios and associated
confidence intervals at the 95 % confidence level. The horizontal line at unity denotes
equality of variances. In CanESM2 LE simulations the variance for the 2000 – 2030
period is roughly 1.5 times higher compared to the 1950 – 1990 period. Variance in
CESM LE simulations reaches is three to four times higher when comparing the two
periods. In both cases variance ratios converges towards zero after 2040 as the Arctic
becomes seasonal ice free in both models and variance vanishes.
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Figure 2.6: Individual simulations (black) and ensemble mean (white) of Arctic sea
ice extent in September from CanESM2 LE and CESM LE under historical ALL
forcing from 1850 to 2100.
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Chapter 3

Results

3.1 Perfect model experiment results

Results from the proposed PME using the two available LE datasets (CanESM2 LE,

CESM LE) are presented in Figure 3.1 and Figure 3.2. Both figures are structured

into four panels each representing different analysis periods. Dots represent the esti-

mated scaling factor β while whiskers illustrate the associated 90% confidence inter-

vals (CI90). Black colors are used for results using CMIP5 control runs to estimate

internal variability. Red colors are used when IV was estimated using LE residual

variability. The residual consistency test score (RCTS) indicates the success rate of

passing the test for both choices of IV.

In the first period from 1950 to 2005 in CanESM LE the ALL response from

any individual LE members is detected in the ensemble mean of remaining members.

When using CESM LE three cases exist where an LE member is not detected in the

ensemble mean response. Uncertainty in the estimated scaling factors is also largest

for this period for both models. Overall the differences in the DA results appear to

be unsystematic. The RCTS seems not to depend on the choice of IV in CanESM2

LE whereas it is six times higher in CESM LE when transient IV2 is used instead of

stationary IV1.

In the second analysis period from 1950 to 2020 the ALL signal is detected in

all cases for both models. Also a noticeable decrease in uncertainty in the estimated

scaling factors is visible across both LEs. Again, differences between the two models

exist (e.g., for CanESM2 LE scaling factors overall seems to be in closer agreement

with unity than for CESM LE) but they do not seem to follow systematic structure.



22

Figure 3.1: DA results from one-signal (ALL) perfect model analysis of Arctic Septem-
ber SIE using CanESM2 LE output. One ensemble member was treated as ”observa-
tion” regressed on the fingerprint from all-but-one remaining LE members. Internal
variability is estimated from either CMIP5 control runs (black) or from time series
of residual variability from CanESM2 LE historical simulations (red). Dots represent
the estimated scaling factor β; whiskers illustrates the 90% confidence interval. The
success score for passing the RCT is given as RCTS when CMIP5 control variability
or LE residual variability is used.
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Figure 3.2: DA results from one-signal (ALL) perfect model analysis of Arctic Septem-
ber SIE using CESM LE output. One ensemble member was treated as ”observation”
regressed on the fingerprint from all-but-one remaining LE members. Internal vari-
ability is estimated from either CMIP5 control runs (black) or from time series of
residual variability from CESM LE historical simulations (red). Dots represent the
estimated scaling factor β; whiskers illustrates the 90% confidence interval. The anal-
ysis is repeated for four different time periods. The success score for passing the RCT
is given as RCTS when CMIP5 control variability or LE residual variability is used.
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For both LE the RCTS is about ten percent higher when IV2 is used instead of IV1.

In the second longest period from 1950 to 2035 the ALL signal from individual LE

members is always detected in the ensemble mean for both PMEs. The uncertainty

associated with corresponding beta terms is decreased compared to the two previous

analysis periods. Only minimal differences in the scaling factors exist across the two

models. The RCTS for both models are contradistinguished. For CanESM2 LE the

RCT is passed in three-quarters of cases when using IV2. In CESM LE it is passed

equally often when IV1 is used instead.

For the full available analysis period from 1950 to 2100 the ALL response is

detected in all cases and with the smallest uncertainty range. The overall uncertainty

ranges for estimated scaling factors in both models are smaller when IV2 is used

instead of IV1.

Overall CanESM2 PME results seem to be independent from the choice of IV

where CESM LE PME scaling factors are generally in closer agreement with unity

when IV2 is used instead of IV1.

The PME results overall vary only little dependent on the choice of IV in all

periods analysed. However, bigger differences exist in the achieved RCTS. Across

models in six out of eight cases the RCTS is higher when transient IV2 is used. In

the remaining two cases IV1 leads to higher passage rates. If the regression residuals

of the DA study were to be random the RCT would be passed more often when

the a independent sample estimate of the covariance matrix was constructed from

unforced control runs (IV1). If the regression residual are distributed non-normally

the test should fail more often on average. If internal variability changes conditional

on the mean SIE then the regression residuals should be in closer agreement with

an independent sample estimate of the covariance matrix constructed from transient

ALL forcing runs (IV2).

The PME results give no strong indication that in the presented, contemporary,

DA analysis period from 1953 to 2012 non-stationary internal variability has any

influence on the robustness of estimated scaling factors. Differences in the RCTS

exist but are rather small in the contemporary period. However, the PME results

also suggest that the nonstationarity in Arctic internal sea ice variability is emerging

in the recent decade and that future DA studies will have to address this change.
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3.2 Detection and Attribution results

The DA results for the multi-model mean (MMM) response are shown in Figure 3.3.

All three fingerprints from OANT, GHG and NAT forcing are detected in all three

observed records (HADISST2, WC, PP) at the 10% significance level. The detection

results for the MMM are consistent when using the two different estimates of internal

variability IV1 and IV2. Minimal differences between the WC and PP data sets are

reflected in the similarity of the estimated scaling factors. The simulated sea ice

response under GHG forcing is in closest agreement with the observed changes in

September Arctic sea ice extent (i.e. scaling factors closest to unity) for all data sets

while exhibiting the narrowest uncertainty ranges of the 90% CI. The response to

NAT is detected in all observation of Arctic SIE. However, the associated uncertainty

range is larger for the weak NAT forcing in all data sets. Using IV2 for internal

variability minimally increases uncertainty into estimated scaling factors under all

three forcings. The WC data set fails the RCT when using IV2 while it is passed

using the HadISST2 or PP data set as observation.

The DA results for individual CMIP5 models when using IV1 are presented here

in Figure 3.4 and in Figure 3.5 when using IV2. A brief summary for each model’s

performance is given in the next paragraphs in alphabetic order. It is worth noting

that signals from some models are estimated from a single or very few simulations.

When looking at the results for individual models it is striking that the majority of

scaling factors with open confidence belong to signals estimated from three or less

simulations.

BBC-CSM-1-1 fingerprints for OANT, GHG and NAT are detectable in WC and

PP observations under IV1. The RCT fails when HadISST2 and WC is used as obser-

vation. Under IV2 signals for OANT, GHG and NAT are detected in all observations

and only when using HadISST2 fails the RCT. Scaling factors are closer to unity

when IV2 is used. The NAT signal is closest to not being detected (scaling factor

closest to zero) when IV1 is used.

Fingerprints for OANT, GHG and NAT from CanESM2 are detected in all obser-

vations and when either using IV1 or IV2. The RCT is plassed in all cases. When

using HadISST2 as observations scaling factors are closer to unity when IV1 is used.

For WC and PP observations using IV2 results in scaling factors closer to unity.

For CNRM-CM5 fingerprints for OANT, GHG and NAT are also detected in all

observations. The RCT is passed in all cases. The results for IV1 and IV2 are almost
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Figure 3.3: Detection and Attribution results for the multi-model mean show esti-
mated scaling factors (dots) when three available observed data sets of September
Arctic sea ice extent are regressed onto model derived fingerprints under GHG, ALL
and NAT forcing and their 90% confidence intervals (whiskers). OANT is calculated
following [46]. Calculation are shown in Table 3.1. The left panel shows results using
IV1 to estimate internal variability. The right panel shows results using IV2 to esti-
mate internal variability. An asterisk denotes failure of the residual consistency test
at the 10% significance level.
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Figure 3.4: Detection results for individual models show estimated scaling fac-
tors by which model-derived fingerprints of September Arctic sea ice extent under
OANT, GHG and NAT forcing need to be multiplied to best match the observations
(HADISST2, WC, PP) and their 90% confidence interval using IV1 (constant) to
estimate internal variability. An asterisk denotes failure of the residual consistency
test at the 10% significance level.
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Figure 3.5: Detection results for individual models show estimated scaling fac-
tors by which model-derived fingerprints of September Arctic sea ice extent under
OANT, GHG and NAT forcing need to be multiplied to best match the observations
(HADISST2, WC, PP) and their 90% confidence interval using IV2 (non-stationary )
to estimate internal variability. An asterisk denotes failure of the residual consistency
test at the 10% significance level.
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indistinguishable from each other.

When using GISS-E2-H simulations fingerprints for OANT, GHG and NAT are

detected in all observation when using IV1. Fingerprints are detected in WC and

PP observations when IV2 is used. The RCT fails for HadISST2 under IV2 and is

passed in all other cases. Scaling factors for all three signals have open CIs when

HadISST2. Uncertainty range is also largest for that observational data set under

IV1, yet bounded.

In GISS-E2-R the fingerprint from ONAT is not detected in WC when IV1 is used.

When IV2 is used all signals are detected in all observations. The RCT is passed in

all cases.

Fingerprints for OANT, GHG and NAT derived from HadGEM2-ES are detected

in all observations when IV1 is used. The RCT is passed for all observations, too.

When using transient IV2 OANT, GHG and NAT signals are only detected in WC

and PP. Scaling factors for HadISST2 have unbound CIs. However, scaling factors

are in closer agreement with unity when IV2 is used.

The NorESM1-M model provided only one simulation under NAT and GHG forc-

ing. Scaling factors for all forcings are outside the range of all other models in every

case. In most cases CIs are unbounded and the RCT fails in every case. However,

scaling factors are closer to unity when IV2 is used instead of IV1. The results are

hard to interpret with just one simulation under each forcing.

In a next step we compare the observed trend of Arctic sea ice decline between

1953 – 2012 with the trend from the multi-model mean response under GHG, ALL

and NAT forcing from which we calculate the contribution from OANT forcing (see

Table 3.1). Here we only consider the observational record WC since it includes more

information than HadISST2 and shows only marginal differences to the PP data

compilation.

Finally, sea ice trends over 1953 – 2012 that are attributable to GHG, OANT

and NAT are calculated by multiplying the trends in the multi-model mean forced

responses by the estimated scaling factors from the DA results. The attributable

trends for the CMIP5 multi-model mean response and WC trends are shown in Figure

3.6. More detailed results are shown in Table 3.2.

Figure 3.6 shows that the best estimate of the trend attributable to NAT forcing

is roughly zero which is consistent with the expectation of quasi-random long term

forcing variability. The trend attributable to GHG forcing is more negative than the

observed negative trend of Arctic sea ice decline in the WC data. The difference can
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Table 3.1: Modelled and observed trends of Arctic sea ice decline 1953 - 2012 in
September.

CMIP5 forcing −2σ Trend [10
6km2

yr
] +2σ

GHG -0.101 -0.064 -0.026
ALL -0.091 -0.049 -0.008
NAT -0.021 0.000 0.021
OANT 1 0.031 0.015 -0.003

Observation Trend [10
6km2

yr
]

WC -0.053
1 OANT = ALL−GHG−NAT

Table 3.2: Scaling factors β and 5-95% confidence intervals (βlow − βup) and corre-
sponding attributable trends (AT)

CMIP5 forcing βlow β βup
GHG 1.059 1.371 1.704
OANT 1.082 1.645 2.260
NAT 0.353 1.251 2.156

Forcing ATlow AT [10
6km2

yr
] ATup

GHG -0.068 -0.088 -0.109
OANT 0.016 0.025 0.032
NAT 0.000 0.000 -0.000
ALL2 -0.052 -0.063 -0.077
GHG+NAT -0.068 -0.088 -0.109
2 ALL = GHG+NAT +OANT

be explained by a small positive annual sea ice trend attributable to the response to

OANT forcing.

Thus we estimate that the effect from GHG and NAT forcing alone would have

resulted in a much higher negative sea ice extent trend in Arctic sea ice simulations of

−0.088[106km2 ∗yr−1] (−0.107[106km2 ∗yr−1] to −0.044[106km2 ∗yr−1]) compared to

−0.063[106km2 ∗ yr−1] (−0.080[106km2 ∗ yr−1] to −0.006[106km2 ∗ yr−1]) under ALL

forcing. This means that roughly 30% of the decline has been offset by the combined

cooling effect from OANT forcing.
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Figure 3.6: Arctic sea ice trends (in 106km2 per year) attributable to OANT, GHG
and NAT forcing. The solid horizontal line indicates the observed sea ice trend from
the WC dataset and its 90% CI (dashed line).
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Chapter 4

Discussion

The overall quality of the presented DA study is predominantly limited to times where

reliable (i.e. spatially and temporally consistent) observations of Arctic sea ice exist.

Any ’observational’ data that is subject to climatological infill (e.g. early HadISST

sea ice data) is generally not suitable for DA. Hence, all datasets used in this study

are limited to the 1953 to 2012 period where full temporal and spatial coverage exists.

Quality is also limited by the climate models that I use. Climate models represent

many of the physical processes that control sea ice formation e.g., melt, transport and

deformation, but many subgrid-scale processes must be parameterized and the devel-

opment of more complex and higher resolution climate models is far from complete.

The selection of the sub-group of CMIP5 models used in this study was predominantly

driven by the criterion of providing at least one simulation under ALL, GHG and NAT

forcing experiments. The CSIRO-MK-360 model was excluded because of concerns

about the reliability of its sea ice simulation. For future generations of CMIP where

more models provide larger ensembles under desired forcing experiments, aspects of

model selection and model codependencies could deserve some reflection.

I find that when looking at the multi-model mean response of the CMIP5 models

under investigation, fingerprints from GHG, OANT and NAT forcing can be detected

in all three observational data sets of Arctic SIE in September. For the first time we

detect the response to both OANT and NAT forcing in the observed Arctic SIE records

using a formal DA approach. Modelled fingerprints are in closest agreement with the

observed Arctic SIE in the PP data record (scaling factors closest to unity). The

strong similarity between PP and WC sea ice fields is also reflected in the DA results.

When the HadISST2 data set is used all fingerprints are also detected. However,

in HadISST2 sea ice information from the Russian sector of the Arctic relies on an
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outdated release of WC and does not yet include the more refined AARI sea ice

information. This additional observational uncertainty may be a reason for stronger

deviations between modelled and observed sea ice fields in the case of HadISST2.

As noted before the variability of SIE is not stationary. Therefore the covariance

matrix of internal variability, a key element of the DA framework, was estimated in

two ways (IV1, IV2) to test the sensitivity of the DA results to transience in the

characteristics of the underlying IV. When comparing the DA result between the two

sets of estimated internal climate variability (IV1, IV2) for the CMIP5 MME, no

striking differences can be identified for the analysis period. Also, when looking at

individual models the DA results the signal detection is generally not sensitive to the

choice of IV and results vary only sightly (i.e. IPSL-CM5A-LR, see Figure 3.4 and

3.5).

The perfect model DA results for the 1950 to 2020 analysis period have the biggest

overlap with the real world DA analysis period covering 1953 to 2012. No noticeable

differences in the ALL signal detection frequency and accuracy are apparent that

could be attributed to the choice of the IV estimate. However, the RCT scores

indicate an overall higher failure rate than would be conceptionally expected from

using a 90% confidence interval for the RCT. This renders the RCT test statistics

used in ROF somewhat conservative. Despite the fact that the increasingly non-

stationary IV acting upon Arctic sea ice is unfolding in the contemporary decade

(Figure 3.1 3.2), its effect on our DA study covering 1953 – 2012, while present, is

small. However, DA methods based on linear regression might be limited, especially

in the context of SIE, due to increasingly non-stationary internal variability in the

near term future and alternative approaches will become more applicable [55].

The results of the presented study demonstrate that available model simulation

conducted for CMIP5 can be used to carry out a formal DA study on observed

September SIE decline over the 1953 to 2012 period. By using new observational

datasets that extend back into the pre-satellite era we are able to detect the climate

response to natural-only (NAT) and other anthropogenic (OANT), mainly aerosols,

forcing alongside the expected decline due to increased greenhouse-gas (GHG) forcing.

The combined cooling effect from OANT forcing is detectable in all three available

datasets consistent with previous studies on aerosol offsetting of Arctic temperatures

[46]. If technological advance and pollution control politics will reverse global aerosols

burden it may be that whatever GHG-induced atmospheric warming has been masked

by the rising levels of aerosols will then be exposed [31, 37].
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A similar connection may exist considering future Arctic sea ice condition. With

large uncertainty, OANT has offset about 30% of the decline that would have been

expected in the absence of OANT forcing due to the combined climate response from

GHG and NAT forcing. Future reduction of aerosol emissions may result in additional

sea ice decline due to the reduced cooling effect.

The detection of a natural external (NAT) forcing in the observed records of

September Arctic sea ice extent could be potentially linked to temporary cooling

from volcanic forcing and the associated increase of stratospheric aerosols[12].

Beyond the relevance for the estimation of the covariance matrix of internal climate

variability in the DA formalism some DA related studies make use of unforced control

simulations for constraining future projections of the climate system [2, 68] and the

likelihood of extreme events [71]. In both cases the internal variability is assumed

to be stationary by using unforced control simulations that are then used to project

future climate conditions. This practice would suffer if the internal variability is in

fact non-stationary. Both approaches could be revisited using large ensemble perfect

model approaches to test their working assumptions.

In this study we analyse model output from eight CMIP5 models that provided at

least one simulation under GHG, ALL and NAT climate forcing for the 1953 to 2012

period and exclude one model from the analysis for its unrealistic sea ice simulations

properties. The next phase of coupled model comparison, CMIP6, should provide a

better experimental design and more realizations under different forcing [16], including

special aerosol-only simulations that can be utilized to follow-up on the question of

how Arctic sea ice condition will evolve in the future under changing aerosol emissions.



35

Bibliography

[1] MR Allen and PA Stott. Estimating signal amplitudes in optimal fingerprinting,

part i: Theory. Climate Dynamics, 21(5-6):477–491, 2003.

[2] Myles R Allen, Peter A Stott, John FB Mitchell, Reiner Schnur, and Thomas L

Delworth. Quantifying the uncertainty in forecasts of anthropogenic climate

change. Nature, 407(6804):617–620, 2000.

[3] Haas C Bajish CC, Pittana M. Evaluation of arctic sea ice variability in cansise

large ensemble of canesm-2. unpublished, 2015.

[4] Nathaniel L Bindoff, Peter A Stott, M AchutaRao, Myles R Allen, N Gillett,

David Gutzler, Kabumbwe Hansingo, G Hegerl, Yongyun Hu, Suman Jain, et al.

Detection and attribution of climate change: from global to regional. 2013.

[5] W. L. Chapman and J. E. Walsh. 20th-century sea-ice variations from observa-

tional data. Annals of Glaciology, 33(1):444–448, 1996.

[6] Josefino C Comiso, Donald J Cavalieri, Claire L Parkinson, and Per Gloersen.

Passive microwave algorithms for sea ice concentration: A comparison of two

techniques. Remote sensing of Environment, 60(3):357–384, 1997.

[7] Josefino C Comiso, Claire L Parkinson, Robert Gersten, and Larry Stock. Ac-

celerated decline in the arctic sea ice cover. Geophysical Research Letters, 35(1),

2008.

[8] V Eyring, JM Arblaster, I Cionni, J Sedláček, Judith Perlwitz, PJ Young, Sli-
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