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ABSTRACT 

Window functions are used to reduce Gibbs' oscillations resulting from the truncation of a 

Fourier series and they are employed in a variety of signal processing applications including 

power spectral estimation, beamforming, and digital filter design. In this dissertation, the 

application of window functions based on the ultraspherical window is explored. 

First, two methods for evaluating the coefficients of the ultraspherical window are pre- 

sented. An efficient formulation for one of the methods is proposed which requires signifi- 

cantly less computation than that required for the Kaiser window. 

Next, a method for selecting the three independent parameters of the ultraspherical 

window so as to achieve prescribed spectral characteristics is proposed. The method can be 

used to achieve a specified ripple ratio and either a main-lobe width or null-to-null width 

along with a user-defined side-lobe pattern. The side-lobe pattern in other known two- 

parameter windows cannot be controlled as in the proposed method. Applications of the 

proposed method in digital beamforming and image processing are explored. 

A closed-form method for the design of nonrecursive digital filters using the ultraspher- 

ical window is developed. The method can be used to design lowpass, highpass, bandpass, 

and bandstop filters as well as digital differentiators and Hilbert transformers that would 

satisfy prescribed specifications. The method yields lower-order filters relative to designs 

obtained with other windows such as the Kaiser, Saramaki, and Dolph-Chebyshev win- 

dows. Alternatively, for a fixed filter length, the ultraspherical window can provide re- 

duced passband ripple and increased stopband attenuation. In addition, it entails reduced 

computational complexity which renders it suitable for applications where the design must 

be carried out in real or quasi-real time. 

An efficient closed-form method for the design of Ad-channel cosine-modulated filter 

banks using the ultraspherical window that would yield prescribed stopband attenuation in 



iii 

the subbands and channel overlap is proposed. On the average, the method yields prototype 

filters with the shortest length and least design computational complexity while the Kaiser 

window yields filter banks with the smallest reconstruction error. When compared with 

other methods, the proposed method yields filter banks that have prototype filters of the 

same length, increased average maximum amplitude error, and the same average aliasing 

error and average total aliasing error. 

The dissertation also considers the application of the ultraspherical window along with 

the short-time discrete Fourier transform method for gene identification based on the well 

known period-three property. The ultraspherical window is employed to suppress spectral 

noise originating from noncoding regions in the DNA sequence. A method for tailoring the 

independent parameters of the ultraspherical window for the identification of a particular 

gene is proposed. Comparisons show that the ultraspherical, Kaiser, and Saramaki windows 

yield values for a gene-identification measure that are approximately the same, and that 

they are 13.72% better than that achieved when using the rectangular window. 
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Chapter 1 

Introduction 

1.1 Background 

Signal processing is a technology used in a wide range of disciplines. It is most prevalent 

in fields of physical science and engineering such as communications and control systems; 

however, it also finds uses in non-tradition fields such as medicine and bioinformatics. 

Systems using signal processing include everyday consumer products such as the television 

or compact-disc player as well as some highly specialized applications such as military 

radar and tracking systems. 

Signal processing is used to represent, transform, and manipulate signals and the in- 

formation they contain and can be performed on both continuous- and discrete-time sig- 

nals. Prior to the 1960s, signal processing algorithms were implemented primarily with 

continuous-time systems using analog circuitry and even mechanical devices. At that 

time, computers lacked the processing capability to make discrete-time systems practi- 

cal. Discrete-time systems were initially used to perform classical numerical analysis tech- 

niques such as interpolation, differentiation, and integration. The roots of digital filtering 

occurred in this respect because these operations represent a manipulation of the frequency 

spectrum of a signal. In subsequent years, many sophisticated algorithms were formulated 

by researchers in academic institutions as well as in industry to perform digital filtering 

tasks. However, it was not until 1965 when the fast Fourier transform (FFT) was introduced 

that digital signal processing (DSP) began to gain acceptance for practical applications. 
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Today DSP algorithms and digital filters are widely used. They can be implemented in 

hardware or software and can process both real-time and off-line (recorded) signals. Digital 

hardware now routinely performs tasks that were almost exclusively performed by analog 

systems in the past. Likewise, software programs have been developed such as MATLAB 

that enable users to implement complex DSP algorithms with simple function calls. Such 

advancements present DSP-based systems as an easy-to-use and flexible alternative to ana- 

log systems. Advancements in hardware design, software design, and algorithm develop- 

ment will continue to fuel the adoption of DSP in new disciplines and tasks previously 

restricted to analog systems. 

1.2 Fourier Series 

The Fourier series of a periodic function x(t) with period T is a representation of x(t) in 

terms of an infinite sum of sine and cosine functions of the form 

z ( t )  = 5 + C(ax cos kwot + hi sin kwot) 
2 

where wo = 2rlT is called the fundamental frequency and kwo is its kth harmonic. The 

coefficients of the Fourier series are given by [ I ]  

1.3 Gibbs' Oscillations and Early Smoothing 

In practice it is usually required to truncate an infinite Fourier series; however, truncation 

of a Fourier series causes so-called Gibbs' oscillations (also known as ringing) which are 

most pronounced near jump discontinuities. For example, the truncated Fourier series of 
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Figure 1.1. Truncated Fourier series with M = 1 (solid line), 2 (dashed line), 3 (dotted 

line), and 11 (dashed-dotted line) terms. 

the signal 

can be expressed as 

0 for - 7r 17 t t -7r/2 

1 for - 7r/2 < t < 7r/2 

0 for7r/2 < t < 7r 

where M is the number of terms retained. This is illustrated in Fig. 1.1 for M = 1,2,3,  and 

11. As M increases, the amplitude of the oscillations near the discontinuity tends to remain 

approximately constant. These oscillations were explained mathematically by Gibbs and 

thus became known as Gibbs' oscillations [2]. 

The performance offered by a truncated Fourier series is often objectionable for prac- 

tical applications and ways must be sought for the reduction of Gibbs' oscillations. One 
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of the first approaches for smoothing out Gibbs' oscillations was offered by Fejer who 

suggested averaging a number of truncated Fourier series [3]. This process, which is some- 

times referred to as Fejer averaging, can be implemented by applying the multiplicative 

factor 

to a truncated Fourier series as follows: 
M 

S ( t )  = 5 + A ( M ,  k )  [ak cos kwot + br sin kwot] 
2 

k = l  

Another smoothing approach for Gibbs' oscillations was proposed by Lanczos who ob- 

served that the amplitude of the oscillations of a truncated Fourier series have approxi- 

mately the same period as either the first term neglected or the last term kept in the series 

[4]. He argued that smoothing the truncated Fourier series over this period would reduce 

the amplitude of the oscillations. This process is called Lanczos smoothing and can be 

implemented by applying the multiplicative factor (sometimes called the sigma factor) 

sin nk/iW 
A ( M ,  k )  = 

T ~ / M  

in Eq. (1.6). Figure 1.2 shows plots of a truncated Fourier series after applying the Fejer 

averaging and Lanczos smoothing techniques. As can be seen, Lanczos smoothing yields 

a better approximation than Fejer averaging, which is rarely used in practical applications. 

A function with only one jump discontinuity has been examined here; however, Gibbs' 

oscillations and the performance obtained by using smoothing factors are characteristic of 

any truncated Fourier series regardless of the number of discontinuities or their locations. 

1.4 Window Functions 

A more comprehensive view of the truncation and smoothing operations is in terms of 

window functions (or windows for short). The truncated Fourier series can be obtained by 

assigning 

c ,=O f o r I n l > M  (1.8) 
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- Gibbs' oscillations - U 
, , I I I I , I I I I I I I I I I I  

Lanczos smoothing 

Fejer averaging 

o l l , l l l , l , , , I , I , , I 1 l l l l l l l  - h - 
w - - -- 

Figure 1.2. Truncated Fourier series for M = 11 using no smoothing (solid line), Fejer 

averaging (dotted line), and Lanczos smoothing (dashed line). 

in the exponential Fourier series given by 

Alternatively, the truncated Fourier series can be obtained by using the multiplicative factor 

1 for Jnl 5 M 
w R ( n T )  = 

0 otherwise 

which can be referred to as the rectangular window for obvious reasons. The windowing 

operation is illustrated in Fig. 1.3. 

Windows are frequently compared and classified in terms of their spectral characteris- 

tics. The spectral representation of a window w ( n T )  of length N = 2M + 1 defined over 

the range - M 5 n 5 M is given by the z transform of w(nT) evaluated on the unit-circle 

of the z plane, i.e., 
M 
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Figure 1.3. Windowing operation - the pointwise multiplication of the signal's Fourier 

coefficients by the window coeficients. 

The frequency spectrum of a window is given by 

where Wo(ejWT) is called the amplitude function. The amplitude and phase spectrums 

of a window are given by A(w) = IWo(ejwT)I and B(w) = -wMT, respectively, and 

(WO(ejWT) (/WO(eO) is a normalized version of the amplitude spectrum. A typical window's 

normalized amplitude spectrum and some common spectral characteristics are depicted in 

Fig. 1.4. 

Two parameters of windows in general are the null-to-null width B, and the main-lobe 

width B,. These quantities are defined as B, = 2wn and B, = 2wT, where wn and w, 

are the half null-to-null and half main-lobe widths, respectively, as shown in Fig. 1.4. An 
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Figure 1.4. Amplitude spectrum and some common spectral characteristics of a typical 

normalized window. 

important window parameter is the ripple ratio r which is defined as 

maximum side-lobe amplitude 
r = 

main-lobe amplitude 

(see Fig. 1.4). The ripple ratio is a small quantity less than unity and, in consequence, it is 

convenient to work with the reciprocal of r in dB, i.e., 

where R can be interpreted as the minimum side-lobe attenuation relative to the main lobe 

and -R is the ripple ratio in dB. Another parameter used to describe the side-lobe pattern 

of a window is the side-lobe roll-off ratio, s, which is defined as 

where al and a2 are the amplitudes of the side lobe nearest and furthest, respectively, from 

the main lobe (see Fig. 1.4). If S is the side-lobe roll-off ratio in dB, then s is given by 
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For the side-lobe roll-off ratio to have meaning, the envelope of the side-lobe pattern should 

be monotonically increasing or decreasing. 

These spectral characteristics are important performance measures for windows. When 

analyzing bandlimited signals, such as sinusoids, weak signals can easily be obscured by 

nearby strong signals. The width characteristics provide a resolution measure between ad- 

jacent signals while the ripple ratio determines the worst-case scenario for detecting weak 

signals in the presence of strong signals. The side-lobe roll-off ratio provides a description 

of the distribution of energy throughout the side lobes, which can be of importance if prior 

knowledge of the location of an interfering signal is known. Further explanation of the 

usefulness of these spectral characteristics can be found in [5] .  

The windowing operation is equivalent to the pointwise multiplication of two discrete- 

time signals at each instant in time. The z transform of these two discrete-time signals is 

equal to the complex convolution of the z transforms of the two signals. Evaluating the 

complex convolution on the unit circle of the z plane yields 

which is the convolution of the frequency spectrums of the window and the signal. The 

effects of a window on a signal can be illustrated by considering a signal x ( t )  with the 

frequency spectrum 

and a window with spectrum Vli(ejuT) similar to that depicted in Fig. 1.4. The complex 

convolution is illustrated in Fig. 1.5. The side lobes in the spectrum of the window cause 

ripples in X ,  (ejwT) whose amplitude is proportional to the ripple ratio. Further, the width 

of the transition bands in Xw(ejw') is proportional to the main-lobe width of the window. 

The convolution process reveals two distinct changes in the frequency spectrum of a 

signal resulting from the windowing process. 
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Figure 1.5. Efect of windowing in the frequency domain. (a)  The complex convolution 

process. (b)  The response of the resulting signal. 
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I .  Spectral spreading occurs at jump discontinuities in X(e jwT)  resulting in gradual 

transitions for one level to the next instead of a sudden switch. 

2 .  Spectral leakage occurs in the form of Gibbs' oscillations in zero values of the signal, 

i.e., although X(ejwT)  is bandlimited, X,(ejwT) is not. 

Both effects cause the loss of spectral resolution. Spectral spreading (or smearing) causes 

loss of resolution between adjacent spectral lines and is directly proportional to the main- 

lobe width of the window. Increased smearing occurs with wider main-lobe widths, which 

usually correspond to shorter window lengths. Conversely, decreased smearing occurs with 

narrower main-lobe widths, which usually correspond to longer window lengths. On the 

other hand, spectral leakage determines the worst-case scenario for detecting weak spectral 

lines in the presence of strong spectral lines nearby and is proportional to the ripple ratio 

of the window. 

1.5 Some Prominent Windows 

In practice, spectral spreading and leakage are opposing effects and the improvement in 

one inevitably leads to the deterioration of the other. To accommodate varied spectral re- 

quirements, a number of windows have been proposed over the years which can be broadly 

categorized as either fixed or adjustable [6]. Fixed windows have only one independent pa- 

rameter, namely, the window length which controls the main-lobe width and thus spectral 

spreading. Some of the more popular fixed windows in addition to the rectangular include 

the triangular (Fejer averaging), von Hann, Hamming, and Blackman windows (expres- 

sions and explanations can be found in [5]) .  Unfortunately, fixed windows do not permit 

adjustable ripple ratios and thus provide no control over spectral leakage. Conversely, ad- 

justable windows have two or more independent parameters, namely, the window length, 

as in fixed windows, and one or more additional parameters that can control other win- 

dow characteristics. Some of the more popular adjustable windows include the Kaiser 

and Saramaki windows [7], [8], which have two parameters and achieve close approxima- 
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tions to discrete prolate functions that have maximum energy concentration in the main 

lobe. Another popular window is the Dolph-Chebyshev window [9] which has two param- 

eters and produces the minimum main-lobe width for a specified maximum side-lobe level. 

The Kaiser, Saramaki, and Dolph-Chebyshev windows can control the amplitude of the 

side lobes relative to that of the main lobe and thus can provide control over both spectral 

spreading and leakage. Figure 1.6 illustrates the weighting functions and spectral represen- 

tations of the rectangular, Kaiser and Dolph-Chebyshev windows of length N = 51. Of the 

three windows, the rectangular window offers the smallest main-lobe width, however it also 

possesses the largest ripple ratio. On the other hand, both the Kaiser and Dolph-Chebyshev 

windows provide smaller ripple ratios but at the expense of an increased main-lobe width. 

Furthermore, if we are to compare the distribution of energy in the side lobes (the side- 

lobe patterns), all of the windows provide significantly different results. Obviously no one 

window is best for all situations but rather superior only for particular situations that arise 

from different applications. The Kaiser window has an important advantage over other 

parametric windows. It can be used to design filters that satisfy prescribed specifications 

[ I  I, [71. 

Windows are used to reduce Gibbs7 oscillations and they are employed in a variety of 

signal processing applications such as power spectral estimation, beamforming, and digital 

filter design. Despite their maturity, windows continue to find new roles in the applications 

of today. Very recently, windows have been used to facilitate the detection of irregular and 

abnormal heartbeat patterns in patients in electrocardiograms [lo], [I I]. Medical imaging 

systems, such as ultrasound, have shown enhanced performance when windows are used to 

improve the contrast resolution of the system [I 21. Windows have also been employed to 

aid in the classification of cosmic data [13], [I41 and to improve the reliability of weather 

prediction models [15]. With such a large number of applications for windows available 

that span a variety of disciplines, window flexibility becomes a key concern. 

Another parametric window is the ultraspherical window which has three independent 

parameters for controlling its properties [16]. Through the proper choice of these parame- 
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Figure 1.6. Windows and their spectral representations. (a)  Rectangular window. (b) 

Kaiser window (a = 3). (c)  Dolph-Chebyshev window ( R  = 40). 
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ters, the amplitude of the side lobes relative to that of the main lobe can be controlled as in 

the Kaiser, Saramaki, and Dolph-Chebyshev windows; and in addition, a variety of side- 

lobe patterns can be achieved. To facilitate the application of the ultraspherical window to 

the diverse range of applications alluded to earlier, practical and efficient design methods 

are required that can utilize its inherent flexibility. 

Nonrecursive Digital Filter Design 

Many methods for nonrecursive digital-filter design have been proposed and a compre- 

hensive review of state-of-the-art methods can be found in [ I ] .  Two of the more popular 

methods are the window and weighted-Chebyshev methods. The window method is based 

largely on closed-form solutions and, as a result, it is straightforward to apply and entails 

a relatively insignificant amount of computation. Unfortunately, the window method usu- 

ally yields suboptimal designs whereby the filter order required to satisfy a given set of 

specifications is not the lowest that can be achieved. On the other hand, multivariable op- 

timization algorithms for nonrecursive digital-filter design, e.g., the weighted-Chebyshev 

method of Parks and McClellan [17], [IS]  and the more recent generalized Remez method 

of Shpak and Antoniou [19] yield optimal designs with respect to some error criterion; 

however, these algorithms generally require a large amount of computation and are, there- 

fore, unsuitable for real or quasi-real time applications like portable multimedia devices 

where on-the-fly designs that adapt to changing environmental conditions such as battery 

power and quality-of-service issues are required. Since each method has advantages and 

disadvantages, it is important for filter designers to consider the application at hand when 

selecting a filter-design method. 
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Scope of Thesis 

Parametric windows find uses in many applications due to their simplicity, low compu- 

tational complexity, and closed-form solutions; and they are easily modified by adjusting 

their independent parameters. A limitation of two-parameter windows is that they cannot 

adjust the side-lobe pattern. In this dissertation, the application of window functions based 

on the ultraspherical window is explored. Other parametric windows such as the Kaiser, 

Saramaki, and Dolph-Chebyshev windows are used throughout the dissertation for the sake 

of comparison. 

In Chapter 2, two methods for evaluating the coefficients of the ultraspherical window 

are presented. The first method corresponds to a concise exposition of Streit's method [16]. 

The second is a new method that involves equating an ultraspherical window's frequency- 

domain representation to a Fourier series from which the coefficients are readily found. 

The two methods yield the same coefficients for the same independent parameters. The 

computational complexity associated with the two methods is compared and an efficient 

formulation for the evaluation of the coefficients is proposed. The new formulation con- 

stitutes a computational complexity of O ( N )  as compared with 0 ( N 2 )  for the previous 

formulation. Alternatively, the amount of computation of the new formulation is on the 

average 4.49% of that required for the previous formulation and 9.27% of that required for 

the evaluation of the Kaiser window coefficients. Aspects of the ultraspherical window's 

frequency spectrum and its equivalence to other windows are also considered. 

In Chapter 3, a method for selecting the three independent parameters of the ultraspher- 

ical window so as to achieve prescribed spectral characteristics is proposed. As discussed 

in Section 1.4, the spectral characteristics of a window are important performance mea- 

sures for window applications such as power spectral estimation. The width characteris- 

tics provide a resolution measure between adjacent signals, the ripple ratio determines the 

worst-case scenario for detecting weak signals in the presence of strong signals, and the 

side-lobe roll-off ratio provides a description of the distribution of energy throughout the 
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side lobes. The method comprises a collection of techniques that can be used to achieve a 

specified ripple ratio and either a main-lobe width or null-to-null width along with a user- 

defined side-lobe pattern. The side-lobe pattern in other known two-parameter windows 

cannot be controlled as in the proposed method. In addition, an expression is provided that 

can be used to judge how much ripple ratio is sacrificed to attain a given side-lobe pattern 

when compared to the Dolph-Chebyshev pattern. This is useful for antenna array designers 

who may need to trade-off between side-lobe pattern and ripple ratio for the application at 

hand. The proposed method can also be used to increase the contrast ratio in imaging sys- 

tems that construct images by using two-dimensional windowed inverse DFTs on spatial 

frequency-domain data such as synthetic aperture radar (SAR), computerized tomography 

(CAT scans), and charge-coupled device (CCD)-based X-rays. 

In Chapter 4, a closed-form method for the design of nonrecursive digital filters using 

the ultraspherical window and the proposed efficient formulation for evaluating its coef- 

ficients is developed. The method can be used to design lowpass, highpass, bandpass, 

and bandstop filters as well as digital differentiators and Hilbert transformers that satisfy 

prescribed specifications. The ultraspherical window yields lower-order filters relative to 

designs obtained using other windows yielding on the average a reduction of 3.07% rel- 

ative to the Kaiser window, 2.86% relative to the Saramaki window, and 5.30% relative 

to the Dolph-Chebyshev window. Alternatively, for a fixed filter length, the ultraspheri- 

cal window increases the stopband attenuation relative to the other windows achieving on 

the average an increase of 2.61 dB relative to the Kaiser window, 2.42 dB relative to the 

Saramaki window, and 4.49 dB relative to the Dolph-Chebyshev window. On the other 

hand, the weighted-Chebyshev method increases the stopband attenuation relative to the 

ultraspherical window by about 2.76 dB on the average; however, the computational com- 

plexity associated with the weighted-Chebyshev method is far greater than that required by 

the proposed method. 

In Chapter 5, an efficient closed-form method for the design of M-channel cosine- 

modulated filter banks using the ultraspherical window that would yield prescribed stop- 
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band attenuation in the subbands and channel overlap is proposed. The design of the pro- 

totype filter is based on the proposed method for the design of lowpass filters described in 

Chapter 4. On the average, use of the Kaiser window yields filter banks with the smallest 

reconstruction error achieving an average percentage decrease in error over the Saramaki 

and ultraspherical windows of, respectively, 1 1.69% and 12.17% for the maximum ampli- 

tude error in the filter bank, 1.34% and 26.5 1 % for the maximum aliasing error in the filter 

bank, and 2.11 % and 34.65% for the maximum total aliasing error in the filter bank. On 

the other hand, use of the ultraspherical window yields filter banks with the least amount of 

design computational complexity (due to the efficient formulation proposed in Chapter 2) 

and prototype filters with the shortest length (as described in Chapter 4). When compared 

with two other window-based optimization design methods, the proposed method increased 

the average maximum amplitude error by 9.53% and 1.5296, respectively, provided almost 

no change in the average aliasing error and the average total aliasing error, and produced 

prototype filters of the same length. The computational effort required by the proposed 

design method is a small fraction, less than 296, of that required by the other two methods 

which require solutions to one-dimensional optimization problems. When compared to a 

filter-bank design method that employs the weighted-Chebyshev method for the prototype 

filter design, the proposed method requires significantly less computation and can be used 

to achieve the prescribed specifications; the other method cannot be used to achieve the 

prescribed specifications and requires a huge amount of computation due to the repeated 

use of the Remez exchange algorithm within an optimization routine. 

In Chapter 6, the application of the ultraspherical window along with the short-time 

discrete Fourier transform method for gene identification based on the well known period- 

three property is explored. The ultraspherical window is employed to suppress spectral 

noise originating from noncoding regions in the DNA sequence. A method for tailoring 

the independent parameters of the ultraspherical window for the identification of a partic- 

ular gene is proposed. When the method was applied to gene F56F11.4 of the C.elegans 

organism, a signal-to-noise (SNR)-based measure for gene identification was increased by 
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13.72% relative to that achieved when using the rectangular window. Comparisons show 

that the ultraspherical, Kaiser, and Saramiiki windows yield approximately the same SNR 

values when their parameters are optimized. The Dolph-Chebyshev window yields an SNR 

value that is 0.28% smaller than that of the other windows. 



Chapter 2 

The Ultraspherical Window Function 

2.1 Introduction 

Not long ago, Streit [16] explored the use of ultraspherical polynomials (also known as 

Gegenbauer polynomials) [20] to produce weighting functions with a variety of side-lobe 

patterns for use in symmetric equally-spaced broadside antenna arrays. These weight- 

ing functions can be considered as window functions with three parameters thereby intro- 

ducing an extra degree of freedom relative to two-parameter windows such as the Kaiser, 

Saramaki, and Dolph-Chebyshev windows. After Streit's work, Soltis [21], [22], and Sakd 

et al. [23] used ultraspherical polynomials to further investigate antenna arrays and used 

them in wavelet analysis. Later, Deczky [24] used the ultraspherical window to provide a 

proof-of-concept example for nonrecursive digital-filter design. 

In this chapter, methods for evaluating the coefficients of the ultraspherical window are 

developed. The chapter is structured as follows. Section 2.2 explores two methods for 

evaluating the coefficients of the ultraspherical window. Section 2.3 describes the spectral 

properties and characterizations of the ultraspherical window. Section 2.4 proposes an 

efficient formulation for evaluating the coefficients of the ultraspherical window. 
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2.2 Window Coefficients 

The coefficients of a right-sided ultraspherical window can be calculated explicitly for an 

even or odd length N  as [16] 

w ( n T )  = - 
n - m  (2.1) 

for n  = 0, 1, . . . , N  - 1, where [20] 

( )  - - ( a - ) ( a - p + l )  
fo rp  > 1 

P! 

with (:) = (z) = 1  because (;) = (n"). T  is the interval between samples and 

A = { P for P # 0 

xP, for p = 0 

In Eq. (2.1), p, x,, and N  are independent parameters and w [ ( N  - n  - 1)T]  = w ( n T ) ,  i.e., 

the window is symmetrical. A normalized window is obtained as w ( n T )  = w ( n T )  /w ( D T )  

where [ ( N  - 1)/2  for odd N  
D =  

( N / 2  - 1  for even N 

A second method for the computation of the window coefficients involves equating an 

ultraspherical window's frequency-domain representation to a Fourier series. To start with, 

we take a lead from Stegen [25] where he notes that a sum 

T 

F ( x )  = (a ,  cos m x  + bm sin m x )  (2.7) 
m=O 

can be found that furnishes the best possible representation of a function u ( x )  that takes 

the values u0, u l ,  u2, . . . , u ~ - ~ ,  when x takes the values 0, 2n/n, 4n/n, . . . , 2(n - l ) r / n ,  
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respectively, where n > 27- + 1. The coefficients in Eq. (2.7) are given by 

2 n-l 2lc-irm 
a,, = - CU~COS- 

n n k=O 

and 
2 n-l 2 k r m  

b, = - C uk sin - 
n n k=O 

If we set r = ( N  - 1)/2  and n = 27- + 1, the values uk = u(xk) in Eqs. (2.8), (2.9), 

and (2.10) are found by setting 

u(x) = c;-, x cos - 
( p  f )  

where C i ( x )  is the ultraspherical polynomial of degree n and order A, and subsequently 

finding ~ ( x , )  at N points distributed over x given by 

where 

us = u(x,) = CEPl (2.13) 

The ultraspherical polynomial can be calculated using the recurrence relationship [20] 

for 7- = 2, 3, ..., n, where C: (x) = 1 and C: (x) = 2Xx. With b, = 0, the expressions for 

coefficients a0 and a, become 
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and 

Now in an effort to simplify the above expressions, we note that CK-, ( x ,  cos 212) is of 

degree N - 1 in X  = x ,  cos 212. As such, it is an even function of X  implying that 

CK-, ( X )  = CK-, ( - X ) .  Using this property, Eqs. (2.15) and (2.16) yield 

and 

We can now express the window coefficients for the ultraspherical window of 

(2.17) 

(2.18) 

odd length 

and for even length as 

for n  = 0, 1 ,  . . . , N - 1. A normalized window is obtained as w^(nT) = w ( n T ) / w ( D T ) .  

This method of computation of the ultraspherical window coefficients produces the same 

results as Eq. (2.1) given the same set of independent parameters p, x,, and N .  

Figure 2.1 shows a comparison of the computation time associated with Eqs. (2.1) and 

(2.19) for increasing values of N. The high computational complexity in Eq. (2.19) is 

primarily due to the repeated calculation of C[ ( x )  by the recurrence relationship given in 

Eq. (2.14). Evidently, Eq. (2.1) offers reduced computational complexity. The computation 

time was measured using the MATLAB stopwatch commands tic and toc which return the 

total CPU time used to execute the code between the two commands. 
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Figure 2.1. Computation time associated with Eq. 2.1 (squares) and Eq. 2.19 (circles) 

vs. the window length N.  

2.3 Spectral Characterizations 

The amplitude function of the ultraspherical window is given by 

wO(ejuT) = Ck-, [x, cos (wT/2)]  

The independent parameter x, can be expressed as 

where B 2 1 and xgL1,, is the largest zero of the ultraspherical polynomial C;-,(z). The 

new independent parameter /3 in Eq. (2.22) is the so-called shape parameter and can be 

used to set the null-to-null width of a window to 4P7r/N, i.e., P times that of the rectangular 

window [8]. Throughout this work, x:! is used to denote the lth zero of the ultraspherical 
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polynomial Ci (x). Unfortunately, closed-form expressions for the zeros of this polyno- 

mial do not exist but the zeros can be found quickly using the following iterative algorithm 

which is valid for 1 = 1 and rnd(n/2) yielding the largest and smallest zeros, respectively. 

The rounding operator is defined as 

where int(y) is the integer part of y and is also known as the floor operator. Due to the 

symmetry relation CL(-x) = (-l)"CE(x), only the positive zeros need be considered. 

Algorithm 2.1 lth zero of Ci (x) . 

Step 1 

Input I ,  A, n, and E .  

If X = 0, then output x* = cos[.i.r(l - 1/2)/n] and stop. 

If X = 1, then output x* = cos[l./r/(n + I)]  and stop. 

Set k = 1, and compute 

Jn2 + 2(n - 1 ) X  - 1 (1 - 1 ) ~  
Y1 = cos 

n + X  n - 1  

Step 2 

Compute 

The values of C i  (x) can be calculated using Eq. (2.14). The denominator in Eq. (2.25) 

can be calculated quickly using the recurrence relationship [20] 

which uses some of the intermediate calculations from Eq. (2.14). 

Step 3 

If IykS1 - ykl < E,  then output x* = y k + ~  and stop. 

Set k = k + 1, and repeat from Step 2. 
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In this algorithm, E is the termination tolerance. A good choice is E = lop6 which would 

cause the algorithm to converge in 3 to 6 iterations. Equation (2.24) in Step 1 represents 

the lowest upper bound for the zeros of the ultraspherical polynomial [26]. In Step 2, the 

Newton-Raphson method can be used to obtain the next estimate of the zero. 

The Dolph-Chebyshev window is a special case of the ultraspherical window and can 

be obtained by letting p = 0 in Eq. (2.1), which results in 

wo (ejwT) = TNPl [x,  cos(wT/2)] (2.27) 

where 

T, ( x )  = cos ( n  cosp ' x )  

is the Chebyshev polynomial of the first kind. In the Dolph-Chebyshev window, the side- 

lobe pattern is fixed, i.e., ( I )  all side lobes have the same amplitude and (2) a minimum 

main-lobe width is achieved for a specified side-lobe level. Hence this window is usually 

designed to yield a specified ripple ratio r .  To design a Dolph-Chebyshev window, x,  is 

calculated using the relation [9] 

Alternatively, the Dolph-Chebyshev window can be designed to yield a specified null-to- 

null width ,/? times that of the rectangular window. This can be accomplished by using 

Eq. (2.22) where x g ) l , ,  = s~) , , ,  is the largest zero of the Chebyshev polynomial of the 

first kind TNpl ( x ) ,  which is given by 

The Saramaki window is a special case of the ultraspherical window and can be ob- 

tained by letting p = 1 in Eq. (2. I) ,  which results in 

where 
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is the Chebyshev polynomial of the second kind. The Saramaki window, like the Kaiser 

window, leads to close approximations of the discrete prolate functions and is designed to 

yield a null-to-null width P times that of the rectangular window. This can be accomplished 

(1) by using Eq. (2.22) where x(,!,;, = z,-,,, is the largest zero of the Chebyshev polynomial 

of the second kind U N P l  (x), which is given by 

Another special case of interest is the case where p = 0.5 in Eq. (2.1), which results in 

where P,(x) is the Legendre polynomial. These polynomials can be calculated using the 

recurrence relationship 

where Po(x) = 1 and Pl(x) = x. 

Figure 2.2 shows the normalized amplitude spectrum for ultraspherical windows with 

different values of the window length, shape parameter, and parameter p. As can be seen, 

the shape parameter controls the null-to-null width while parameter p controls the side-lobe 

pattern. As discussed in Section 1.4, the width parameters affect the resolution between 

adjacent signals while the side-lobe pattern affects the distribution of energy throughout 

the side lobes. 

2.4 Efficient Formulation for Window Coefficients 

A reduction in the computational complexity associated with windowing operations can be 

achieved by reducing the amount of computation required to generate the window coeffi- 

cients. For the ultraspherical window, the primary computational bottleneck in Eq. (2.1) is 

due to the recursive evaluation of the binomial coefficients using Eq. (2.2). In its current 
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Figure 2.2. Normalized amplitude spectrum for the ultraspherical window. ( a )  Length 

N = 51 designed with ,!3 = 2 and p = -0.5 (dashed), 0 (solid), and 1 (dashed-dotted). (6 )  

Length N = 101 designed with ,L? = 3 and p = 0 (solid), 3 (dashed), and 6 (dashed-dotted). 
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form, Eq. (2.1) requires the evaluation of (D + 1) +ED, E L o  2 = D2 + 4 0  + 3 binomial 

coefficients where D is given by Eq. (2.6). By exploiting certain redundancies in Eq. (2. I ) ,  

the number of binomial-coefficient evaluations can be reduced quite significantly and the 

computational complexity associated with the ultraspherical window can be reduced. To 

begin with, the first binomial-coefficient expression in Eq. (2.1) can be expressed as 

where a0 = p  + p - 1 and po = p  - 1. Using the identity [20] 

uo (n)  can be represented as 

which leads to the recurrence relationships 

In this formulation, the evaluation of one binomial coefficient replaces the evaluation of 

D + 1 binomial coefficients thereby providing a savings of D binomial-coefficient evalua- 

tions. 

Next, let us express the second binomial-coefficient expression in Eq. (2.1) as 

p + n - 1  

n - m  

where a1 = p  + n - 1 and g = n - m. 

recursive identity [20] 

Observing that vl (n, n) = (:) = 1  and using the 
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vl (n, m) can be represented as 

This analysis leads to the recurrence relationships 

This formulation is equivalent to the evaluation of D binomial coefficients replacing the 

evaluation requirements of c:=, E L = ,  1 = 1 D2 + 4 D + 1 binomial coefficients, which 

would result in a savings of $ D2 + i D  + 1 binomial-coefficient evaluations. 

Finally, let us express the third binomial-coefficient expression in Eq. (2.1) as 

where a2 = p - n. Observing that v2(n7 0 )  = (7) = 1 and using the recursive identity in 

Eq. (2.4 I) ,  v2 (n, m)  can be represented as 

This leads to the recurrence relationships 

This formulation is equivalent to the evaluation of D binomial coefficients replacing the 
D evaluation of E n = ,  E:=, 1 = $D2 + ;D + 1 binomial coefficients, which provides a 

savings of i D 2  + D + 1 binomial-coefficient evaluations. 

Using the above expressions, the coefficients of the right-sided ultraspherical window 

of length N can be calculated using the formulation 

where vO(n), vl (n, m),  and v2(n7 m)  are calculated using the recurrence relationships pro- 

vided by Eqs. (2.39), (2.43), and (2.46), respectively, and A, B, and p are given by Eqs. (2.3), 
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(2.4), and (2.5), respectively. This method requires the recursive evaluation of 2 0  + 1 bino- 

mial coefficients, which constitutes a computational complexity of O ( N )  as compared with 

the evaluation of D 2  + 4 0  + 3 binomial coefficients required by Eq. (2. l ) ,  which consti- 

tutes a computational complexity of 0 ( N 2 ) .  In this way, an overall savings of D2 + 2 0  + 2 

binomial-coefficient evaluations can be achieved. Figure 2.3 shows the computation time 

required to evaluate the coefficients of the ultraspherical window using Eqs. (2.1) and (2.47) 

vs. the window length. The computation time includes that required to calculate to largest 

zero of the ultraspherical polynomial zt),,, using Algorithm 2.1 and was measured using 

the MATLAB stopwatch commands tic and toc. The time to compute the coefficients of 

the Kaiser window is included for comparison. The zeroth-order modified Bessel function 

of the first kind lo(%) was evaluated to an accuracy of E = 1 0 ~ ' ~ .  The amount of computa- 

tion of Eq. (2.47) is on the average 4.49% of that required by Eq. (2.1) and 9.27% of that 

required for the evaluation of the Kaiser window coefficients. 

2.5 Conclusions 

Two methods for evaluating the coefficients of the ultraspherical window were explored. 

The two methods yield the same coefficients for the same independent parameters p, x,, 

and N.  Economies in computation are achieved through an efficient formulation for the 

window coefficients which entails a computational complexity of O ( N )  as compared with 

0 ( N 2 )  for Streit's method. Alternatively, the amount of computation of the new formula- 

tion is on the average 4.49% of that required for Streit's method and 9.27% of that required 

for the evaluation of the Kaiser window coefficients. In addition, a method for setting the 

null-to-null width of the ultraspherical window to 4/3n/N, i.e., /3 times that of the rectan- 

gular window, was introduced. The chapter has also shown that the Dolph-Chebyshev and 

Saramaki windows are special cases of the ultraspherical window and can be obtained by 

setting p = 0 and 1, respectively. 
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Figure 2.3. Computation time associated with Eq. 2.1 (squares), Eq. 2.47 (triangles), and 

for the Kaiser window (circles) vs. the window length N .  



Chapter 3 

Design of the Ultraspherical Window 

with Prescribed Spectral Characteristics 

3.1 Introduction 

Window selection has been a complicated task in the past due to the varied spectral char- 

acteristics required for different applications. For instance, if a signal contains a strong 

interference source whose frequency differs quite significantly from the frequency of in- 

terest, then a window with large side-lobe roll-off ratio, i.e., s > 1, should be considered. 

On the other hand, if a strong interference source is near the frequency of interest, then a 

window with a rather small ripple ratio andlor small side-lobe roll-off ratio, i.e., s < 1 is 

desirable. Further, for a sinusoidal interference source in which the focus is on amplitude 

accuracy rather than precise frequency location, a window with a wide main lobe is recom- 

mended. Window design methods should be flexible and should provide the designer the 

ability to tailor the window to account for varied application requirements. 

Many of the available windows were obtained by exploiting certain characteristics of 

well-known polynomials and special functions to satisfy a particular criterion best. For 

instance, the Kaiser and Saramaki windows employ modified Bessel functions and Cheby- 

shev polynomials of the second kind, respectively, and are close approximations to discrete 

prolate functions that have maximum energy concentration in the main lobe. The Dolph- 

Chebyshev window employs Chebyshev polynomials of the first kind and produces the 
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minimum main-lobe width for a specified maximum side-lobe level. These two-parameter 

windows can control the main-lobe width and the ripple ratio but cannot control the pattern 

of the side lobes. The three-parameter ultraspherical window can control the main-lobe 

width and the ripple ratio as well as the side-lobe pattern. 

In this chapter, a method is proposed for selecting the parameters of the ultraspherical 

window so as to achieve prescribed spectral characteristics such as ripple ratio, main-lobe 

width, null-to-null width, and side-lobe roll-off ratio. The chapter is structured as follows. 

In Section 3.2 a method for designing windows that satisfy prescribed spectral character- 

istics is proposed. The method entails a variety of short algorithms that can be used to 

determine two of the three independent parameters based on the prescribed spectral char- 

acteristics. In Section 3.3 an empirical formula that can be used to accurately predict the 

window length (the third parameter) required so as to achieve multiple prescribed spec- 

tral characteristics simultaneously is proposed. In Section 3.4 the ultraspherical window's 

effectiveness in achieving prescribed spectral characteristics is compared with respect to 

that in other windows. Section 3.5 presents examples and demonstrates the accuracy of the 

proposed method. Section 3.6 describes two applications of the proposed method in the 

areas of beamforming and image processing. 

3.2 Prescribed Spectral Characteristics 

With the appropriate selection of the parameters p, x,, and N ,  the ultraspherical window 

can be designed so as to achieve prescribed specifications for the side-lobe roll-off ratio, 

the ripple ratio, and one of the two width characteristics simultaneously. Parameter p 

alters the side-lobe roll-off ratio, x, provides a trade-off between the ripple ratio and a 

width characteristic, and N allows different ripple ratios to be obtained for a fixed width 

characteristic and vice versa. In some applications the window length N may be fixed. 

Such a scenario limits the designer's choice in achieving prescribed specifications for the 

side-lobe roll-off ratio and either the ripple ratio or a width characteristic but not both. 
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Figure 3.1. Some important quantities of the ultraspherical polynomial C i - ,  (x) for the 

values p = 2 and N = 7. 

For the case where N is adjustable, a prediction of N is possible which allows one to 

achieve prescribed specifications for the side-lobe roll-off ratio, the ripple ratio and a width 

characteristic simultaneously. 

In the subsections that follow, algorithms are proposed that enable one to achieve each 

prescribed specification to a high degree of precision. Some important quantities to be used 

are identified in Fig. 3.1 which depicts a plot of C i - ,  (x) for the values p = 2 and N = 7. 

The modified sign (msgn) and max functions are defined as 

-1 forx < 0 
msgn(x) = 

1 for x 2 0 

x for x 2 y 
max(x, y) = 

y for y > x 



3.2 Prescribed Spectral Characteristics 34 

3.2.1 Side-lobe roll-off ratio 

To generate a window for a fixed 137 and a prescribed side-lobe roll-off ratio s, one can select 

the parameter p  appropriately. This can be accomplished by solving the one-dimensional 

minimization problem 

(,+I) where the values of Ck (x) are given by Eq. (2.14) and xN-,,, and xt+$,d[(N-2),21, which 

are identified in Fig. 3.1, are the largest and smallest zeros, respectively, of the derivative 

(P+ 1) of C i - l ( x ) ,  namely, 2p~E? i ( z ) .  The zero x,-,,, can be found using Algorithm 2.1 with 

1 = 1, X = p  + 1, n = N - 2, and E = lop6.  The zero x~~.$nd[(N-2)~,l  can be found using 

Algorithm 2.1 with 1 = rnd[(N - 2)/2], X = p  + 1, n = N - 2, and E = 

Simple algorithms such as dichotomous, Fibonacci, or golden section line searches as 

outlined in [27] can be used to perform the minimization in Eq. (3.1). The lower and upper 

bounds on p  in Eq. (3.1) can be set to 

p~  = 0 and pH = 10 for s > 1 

PL = -0.9999 and p~  = 0 for 0 < s < 1 

I minimize F = 
WLIWIILH 

If s = 1, then no minimization is necessary and p  = 0 yields the Dolph-Chebyshev win- 

dow. The bound k~  = -0.9999 was chosen because CK-,(x) has a singularity at p  = -1. 

Also, for values of p  5 -1.5, the zero z!,$ coincides with the zero x!$ rendering the 

resulting window useless for our purposes. The bound p~  = 10 was chosen because the 

improvements in the side-lobe roll-off ratio that can be achieved for values of p  > 10 are 

negligible. 

The ultraspherical window imposes limits on the side-lobe roll-off ratio that can be 

achieved for low values of N. For example, if N = 7, window designs with S = 20 log,, s 

outside the range -10.19 < S < 12.78 dB are not possible for any value of p. For this 

reason, the side-lobe roll-off ratio's design range must be limited for a given N to that 

'K-1 (~t+:i,d[(N-2)/2] 
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Table 3.1. Limiting Side-Lobe Roll-OfRatios for Small Values of N 

min S (dB) max S (dB) 

produced using p~ = -0.9999 and p~ = 10. The limiting values are shown in Table 

3.1 for window lengths in the range 5 < N < 20 which spans the practical design range 

-20 < S 5 60 dB. 

3.2.2 Null-to-null width 

To generate a window with p and iV fixed and a prescribed null-to-null half width of w, 

radls, one can select the parameter x, appropriately. This can be accomplished by calcu- 
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lating x, using the expression 
-(PI 

where the zero z t l , , ,  can be found using Algorithm 2.1 with 1 = 1, X = p ,  n = N - 1, 

and E = 

3.2.3 Main-lobe width 

To generate a window with p and N fixed and a prescribed main-lobe half width of w, radls, 

one can select the parameter x, appropriately. This can be accomplished by calculating x, 

using the expression 

where x, is defined by C;, (xu) = msgn(p) -max(a,  b) as identified in Fig. 3.1. Parameter 

(,+I) x, is found through a three-step process. First, the zero XN-2,1 is found using Algorithm 

2.1 with 1 = 1, X = p + 1, n = N - 2, and E = and then the parameter a = 

(!J+l) is calculated. Second, the zero x , , - ~ , , , ~ , ( ~ - ~ ) , ~ ,  is found using Algorithm 

2.1 with 1 = rnd[(iV - 2)/2], X = p + 1, n = N - 2, and E = lop6 and then the parameter 

) / is calculated. Third, since msgn(p).max(a, b) = CK-, (x,) 

as seen in Fig. 3.1, parameter x, is found using a modified version of Algorithm 2.1 where 

Eq. (2.25) is replaced by 

and the starting point given in Eq. (2.24) is replaced by y1 = 1. Instead of finding the 

largest zero of f (x) = CL (x),  the modified algorithm finds the largest zero of f (x) = 

C:(x)-msgn(p) . max(a, b), which is parameter xu.  In the modified algorithm, 1 = 1, 

X = p , n  = N - 1, and& = lop6. 
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3.2.4 Ripple ratio 

To generate a window with p and N fixed and a prescribed ripple ratio r ,  one can select 

the parameter x, appropriately. The parameter x, is found through a three-step process. 

(,+l) First, the zero x,-,,, is found using Algorithm 2.1 with 1 = 1, X = p + 1, n = N - 2, 

and E = lop6 and then the parameter n = ICE-, ( x ~ ~ ~ ) , )  I is calculated. Second, the 

(,+I) 
x~-2,rnd[(~-2)/2] is found using Algorithm 2.1 with 1 = rnd[(N - 2)/2], A = p + 1, 

n = N - 2, and E = and then the parameter b = C:-, xN-2,rndj(N-2)/21 I ( ""' ) I  is 
calculated. Third, the parameter x, is found using a modified version of Algorithm 2.1 

where Eq. (2.25) is replaced by 

C,^(Yk) - msgn(l.l) . max(a, b ) / r  
Y k + l  = Yk - (3.6) 

2xc,"+: ( ~ k )  

and the starting point given in Eq. (2.24) is replaced by 

1 
yl = cosh - 

[ N - 1  c o s h l  (!)I 
Instead of finding the largest zero o f f  (x) = C[(x), the modified algorithm finds the largest 

zero of f (x) = CE (x) -msgn(p) . max(a, b)/r which is the parameter x,. In the modified 

algorithm 1 = 1, X = p ,  n = N - 1,  and E = lop6. 

3.3 Prediction of N 

In some applications designers may be able to choose the window length N. In such ap- 

plications, the extra degree of freedom allows for more flexible window designs to be ob- 

tained. Specifically, solutions that are required to meet both a prescribed ripple ratio and 

width characteristic are possible. In this section, an empirical equation is proposed that 

predicts the window length N required to yield a prescribed side-lobe roll-off ratio, ripple 

ratio, and main-lobe width simultaneously. 

To obtain an equation for N ,  we employ the performance factor [28] 
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which is used to give a normalized width that is approximately independent of N. Rear- 

ranging Eq. (3.8), an expression for N is obtained as 

where N is rounded up to the nearest integer. From Eq. (3.9), it becomes clear that N can 

be predicted by obtaining an accurate approximation of D. 

3.3.1 Measurements and tendencies of D 

To obtain realistic data for the approximation of D,  windows of length N = 7, 9, 13, 19, 

51, 127, and 255 were designed to cover the range 20 5 R 5 100 in dB for the parameter 

range -0.9999 < p < 10. Figure 3.2 shows plots of D vs. R in dB for the two cross 

sections p = 1 and 10. The plots tend to be quadratic and are representative for the range 

-0.9999 < p 5 10 considered in this work. Note the approximately linear behavior for 

N = 255 indicating the independence of the performance factor D  with respect to ,V for 

large N ,  which agrees with previous observations concerning the performance factor D  

[281- 

3.3.2 Data-fitting procedure 

Before approximating D, the allowable error in the data-fitting procedure must be deter- 

mined. From Eq. (3.9), we note that for N >> 1 a per unit error in D gives approximately 

the same per unit error in N ,  i.e., 

For example, if N = 127 and a relative error in D of 1.00 percent is assumed, that is, 

A D / D  = 0.01, then an equivalent error of 1.26 samples in N occurs. Errors of this 

magnitude have been considered acceptable in the past [28] as N may be in error by at 

most 1 or 2 and only for high window lengths. Thus, the relative error A D I D  < 0.01 is 

sought throughout the approximation procedure. 
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Figure 3.2. Performance factor D vs. R in dB for windows of length N = 7, 9, 13, 19: 51, 

127, and 255 for values of ( a )  ,LL = 1 and (b) ,Y = 10. 
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A general quadratic model was used for the approximation of D as a function of S in 

dB, R in dB, and the main-lobe half width w,. Such a model takes the form 

where d ( i ,  j,  k )  = (S/20) 'Rjw;.  The coefficients a i j k  were found through a linear least- 

squares solution of the overdetermined system of sampled data points {S, R ,  w,: D )  where 

D is the dependent variable. 

Two separate sets of 27 coefficients were found for the ranges 0 5 S 5 60 and -20 5 

S 5 0 given in dB and are provided in Tables 3.2 and 3.3, respectively. Two sets were 

required to produce accurate solutions due the nature of D and its relation to positive and 

negative S values. Figure 3.3 shows plots of the relative error of the predicted D vs. R 

for various window lengths over the cross sections p = 1 and -0.6. The mean of the 

absolute relative error for the approximations given by Tables 3.2 and 3.3 is 0.2874 and 

0.2266 percent, respectively. Less error occurs for the coefficients in Table 3.3 because the 

approximation was performed over a smaller range of S than that used for Table 3.2. The 

absolute relative error exceeds 1 .O percent only for small values of R less than 20 and large 

values of R greater than 100. 

In an attempt to reduce the number of approximation model coefficients, the quadratic 

model 
1 

where 

l = i + j + k < 2  

was investigated which yields 10 coefficients as opposed to 27. Using the same data fitting 

technique as before, the mean of the absolute relative error for the entire approximation 

was found to be 1.0911 percent. In 70 percent of the predictions, the absolute error was 

less than 1 .O percent. 



3.3 Prediction of N 4 1 

Table 3.2. Model CoefJicients a i j k  in Eq. 3.1 I (S > 0) 

Table 3.3. Model CoefJicients a i j k  in Eq. 3.1 I ( S  < 0) 
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Figure 3.3. Relative error of predicted D,  A D I D ,  in percent vs. R in dB for window 

lengths N = 7,9,13,19,51,127, and 255 over the cross sections (a )  p = 1 and (b)  p = 

-0.6. 
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On the basis of the above experiments, N can be accurately predicted using the formula 

N = int 

where D,,,, is given by the 27-term approximation model described in Eq. (3.1 1 )  using 

the coefficients provided in Tables 3.2 and 3.3. 

The same process can be used to predict N for other width characteristics such as the 

null-to-null or 3-dB widths. 

3.4 Comparison With Other Windows 

For a fixed window length, two-parameter windows such as the Kaiser, Saramaki, and 

Dolph-Chebyshev windows can control the ripple ratio. The three-parameter ultraspher- 

ical window can control the ripple ratio as well as the side-lobe roll-off ratio. For com- 

parison's sake, the ultraspherical window of the same length was designed to yield the 

side-lobe roll-off ratio and main-lobe width produced by the Kaiser window, for values of 

the Kaiser-window parameter a in the range [I, 101, and the resulting ripple ratios for the 

two window families were measured and compared. The Dolph-Chebyshev and Saramaki 

windows were excluded from the comparison because these windows are special cases of 

the ultraspherical window that can be readily obtained by fixing parameter ,LL to 0 and 1, 

respectively. Figure 3.4a shows plots of the side-lobe roll-off ratio in dB obtained for the 

Kaiser window for varying length vs. D = 2w,(N - 1) and Fig. 3.4b shows a plot of AR 

which is defined as 

AR= RU - RK (3.15) 

where Ru and RK are the values of R for the ultraspherical and Kaiser windows, respec- 

tively, in dB for the same length, side roll-off ratio, and main-lobe width. As can be seen, 

the ultraspherical window offers a reduced ripple ratio for low values of D whereas the 

Kaiser window gives better results for large values of D. Thus for a given value of N, there 

is a corresponding main-lobe half width, say, w , ~ ,  for which the ultraspherical window 
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Table 3.4. Model Coeficients for w , ~  in Eq. 3.16 

NL NH / a b c d 

gives a better ripple ratio than the Kaiser window. For main-lobe half widths that are larger 

than w , ~ ,  the Kaiser window gives a smaller ripple ratio. A plot of w , ~  versus N is shown 

in Fig. 3.5. From this plot, a formula can be obtained for w , ~  as 

where the coefficients are presented in Table 3.4. In effect, if the point [N, w,] is located 

below the curve in Fig. 3.5, the ultraspherical window is preferred and if it is located above 

the curve, the Kaiser window is preferred. 

Examples 

Example I: For N = 51, generate the windows that will yield S = 20 dB for (a)  w, = 0.25 

rad/s and (b) w, = 0.25 rad/s. 

Figure 3.6 shows the amplitude spectrums of the windows obtained. Both designs meet 

the prescribed specifications and produced (a) R = 42.97 dB and (b) R = 40.85 dB. For 

both designs, the minimization of Eq. (3.1) resulted in p = 0.9517 and Eqs. (3.4) and (3.3) 

gave (a) x, = 1.0067 and (b) x, = 1 .0O6O, respectively. 

Example 2: For N = 51, generate the windows that will yield R = 50 dB for (a )  

S = -10 dB and (b) S = 30 dB. 

Figure 3.7 shows the amplitude spectrums of the windows obtained. Both designs meet 

the prescribed specifications and produced main-lobe widths of (a) w, = 0.2783 radls 

and (b) w, = 0.2975 radls. Minimizing Eq. (3.1) resulted in (a) p = -0.3914 and (b) 



Figure 3.4. (a )  Side-lobe roll-of ratio in dB for Kaiser windows of length N = 

7,9,13,19,51,127, and 255. (6) Change in the ripple ratio in dB provided by ultraspheri- 

cal windows of the same length that were designed to match the Kaiser windows' side-lobe 

roll-ofratio and main-lobe width. 
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Figure 3.5. Values of the main-lobe halfwidth that achieve the same ripple ratio for both 

the Kaiser and ultraspherical windows. 



I 1.5 2 

Frequency (rads) 

Frequency (rads) 

Figure 3.6. Ultraspherical window amplitude spectrums for N = 51 yielding S = 20 dB 

for ( a )  w, = 0.25 rad/s and (b) w, = 0.25 rad/s (Example 1). 
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1-1 = 1.5151 and the procedure described in Section 3.2.4 gave (a) x, = 1.0107 and (b) 

2, = 1.0091. 

Example 3: Predict the required window length N and generate the ultraspherical 

window that will yield w, = 0.2 rad/s and R > 60 dB for (a )  S = 10 dB and (b )  S = -10 

dB. 

A consequence of rounding N up to the nearest integer is that one prescribed spectral 

characteristic is oversatisfied. For the method presented in this chapter, one will always 

achieve S and either w, or R to a high degree of precision by using either Eq. (3.4) or 

the procedure described in Section 3.2.4 as appropriate to calculate parameter x,. In this 

example, we oversatisfy R by using Eq. (3.4). Figure 3.8 shows the amplitude spectrums of 

the windows obtained. Both designs meet the prescribed characteristics and oversatisfied 

R by (a) 0.47 dB and (b) 0.41 dB. Using the prediction formula given in Eq. (3.14), the 

window lengths required to yield the prescribed characteristics were (a) N = 81 and (b) 

N = 83. Minimizing Eq. (3.1) resulted in (a) j~ = 0.3756 and (b) p = -0.3378 and 

Eq. (3.4) gave (a) x, = 1.0049 and (b) x, = 1.0053. 

To examine the accuracy of the window length prediction formula, windows were de- 

signed to yield the same prescribed characteristics with window lengths taken to be one 

less than predicted by Eq. (3.14), i.e., for (a) N - 1 = 80 and (b) N - 1 = 82. Figure 

3.9 shows the amplitude spectrums obtained for N and N - 1 in the critical area near the 

main-lobe edge. All windows were found to satisfy the S and w, specifications; however, 

both windows of the reduced length fell short of R > 60 dB by (a) 0.35 dB and (b) 0.51 

dB. The results demonstrate the accuracy of Eq. (3.14) in predicting the lowest value of N 

needed to yield the set of prescribed spectral characteristics simultaneously. 

Example 4: For N = 101, generate Kaiser and ultraspherical windows that will yield 

(a )  R = 50 dB and (b) R = 70 dB and compare the results obtained. 

The required Kaiser-window parameter a for (a) and (b) can be predicted using the 
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Frequency (radls) 

(a> 

Frequency (radls) 

Figure 3.7. Ultraspherical window amplitude spectrums for N = 51 yielding R = 50 dB 

for ( a )  S = - 10 dB and (b) S = 30 dB (Example 2). 
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Frequency (radls) 

(a) 

1 1.5 2 

Frequency (radls) 

(b) 

Figure 3.8. Ultraspherical window amplitude spectrums yielding W R  = 0.2 rad/s and 

R 2 60 dB for (a )  S = 10 dB and (b)  S = - 10 dB (Example 3a). 
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0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 

Frequency (radls) 

(a) 
I I I I I I i I I 

Frequency (radls) 

(b) 

Figure 3.9. Ultraspherical window amplitude spectrums for predicted N (solid line) and 

predicted N - 1 (dashed line) yielding w~ = 0.2 rad/s and R 2 60 dB for ( a )  S = 10 dB 

and ( b )  S = -10 dB (Example 3b). 
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formula [29] 

I 0 R 5 13.26 

a = 0.76609(R - 13.26)O.~ + O.O9833(R - 13.26) 13.26 < R 5 60 (3.17) 

0.12438(R + 6.3) 60 < R < 120 

as a = 6.8514 and 9.4902 producing main-lobe half widths of w, = 0.1462 and 0.1964 

radls, respectively. The ultraspherical window was designed to yield the same side-lobe 

roll-off ratios and main-lobe widths as the Kaiser window measured as (a) S = 29.19 dB 

and (b) S = 32.02 dB. Minimizing Eq. (3.1) resulted in (a) ,LL = 1.0976 and (b) p = 

1.2165 and the procedure described in Section 3.2.4 gave (a) x, = 1.0023 and (b) z, = 

1.0044. The difference in R was (a) AR = 0.2236 and (b) AR = -0.4496 dB. Thus, the 

ultraspherical window gives a better ripple ratio in (a) and the Kaiser window gives a better 

ripple ratio in (b) in agreement with Eq. (3.16). 

3.6 Applications 

The ultraspherical window has been presented in terms of its spectral characteristics to 

facilitate its use for a diverse range of applications. In this section, two window applica- 

tions, beamforming and image processing, are presented to illustrate the benefits obtained 

by exercising the proposed method's flexibility. 

3.6.1 Beamforming 

In radar, ocean acoustics, and ultrasonics it is necessary to design antenna or transducer 

systems with specific directivity properties, i.e., for point-to-point communication systems 

a high gain in one direction with low gain in all other directions is considered desirable. 

Known as beamforming, this activity shapes the radiation pattern (or beam) of a transmit- 

ted signal so that most of its energy propagates towards the intended receiver or target. 

Similarly, when receiving signals, the receiver sensitivity (or beam) can be directed to- 

wards the transmitter or source to receive the maximum signal strength possible. Directing 



and focusing signal energy in this fashion leads to the rejection of interference from other 

sources and to reduced power requirements for transmitter and receiver power, which in 

turn provides cost savings. 

One practical and common antennaltransducer configuration is the linear array, which is 

characterized by having all its radiating elements positioned in a straight line. Linear arrays 

can consist of one continuous radiating element or a number of individual discrete elements. 

Generally, discrete elements are favored because of their capability to dynamically change 

the directivity properties of the array. The array factor (AF) is used to describe an array's 

directivity properties. For a broadside array of length N with amplitude excitations for 

each isotropic element being symmetrical about the center of the array, the AF is given by 

xi=, a: cos[(2n - l )u]  for odd N 
AF(0) = 

C;=, a, cos[2(n - l ) u ]  for even N 

where 
u = the spatial frequency (degreedm) 

= ( r d / X )  cos 0 

0 = the bearing angle (degrees) 

d = the spacing between elements (m) 

X = the wavelength of the signal (m) 

a, = the excitation coefficients or currents (A) 

[ ( N + 1 ) / 2  forodd N 
T = 

N/2 for even N 

The relationship between AF(0) and a, is analogous to the relationship between W (e jwT)  

and w(nT).  This similarity allows window design techniques to be applied directly to 

the design of antenna arrays. As in window designs, the trade-off between the main-lobe 

width and the side-lobe level of the AF is of primary importance. In the uniform array the 
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excitation coefficients are all equal, as in the rectangular window, and hence the main-lobe 

width of the AF is narrow and side-lobe levels are large. At the other extreme, the binomial 

array's AF has no side lobes but has a large main-lobe width. Practical difficulties also arise 

with the implementation of the binomial array because the difference between excitation 

coefficients can be considerable leading to disparate current requirements. The Dolph- 

Chebyshev array, which offers an adjustable trade-off between the main-lobe width and 

side-lobe level, overcomes these implementation difficulties and is generally accepted as 

being a practical compromise between the uniform and binomial arrays. The AF suggests 

that the Dolph-Chebyshev array is best used when no prior knowledge of the interference 

sources is available, i.e., the likelihood of interference is equal in all directions. However, if 

the general direction of interference sources can be identified, no adjustments can be made 

to the side-lobe roll-off ratio when using the Dolph-Chebyshev array. If the directions of 

the interference sources are known precisely, the method of Shpak [3 1 1  generates optimal 

patterns with respect to some error criterion that achieves prescribed null locations by using 

a Remez-type exchange algorithm. 

A solution that requires less computation than the method of Shpak yet achieves more 

flexibility than Dolph-Chebyshev designs could be to use the three-parameter ultraspherical 

window, in which case the excitation coefficients are given by 

where w(nT) are the coefficients provided by Eq. (2.1) resulting in 

AF(8) = CK-, (x, cos u) . (3.20) 

This is equivalent to the amplitude function of the ultraspherical window given in Eq. (2.21) 

with the substitution u = w T / 2 .  Similarly, all the techniques developed in this chapter are 

easily transferable to customizing the directivity properties of linear arrays. Fair compar- 

isons between the two AFs can be made by designing ultraspherical and Dolph-Chebyshev 

arrays of the same length and the same null-to-null width, and then measuring the ripple 



ratios. To accomplish this, we make cos(w,/2) in Eq. (3.3) equal for both the Dolph- 

Chebyshev and ultraspherical arrays which yields the relation 

where xo is given by Eq. (2.29). Substituting and rearranging yields the closed-form ex- 

pression for the ripple ratio 

that the Dolph-Chebyshev array of the same length and null-to-null width would produce 

compared to an ultraspherical array. This expression can be used to judge how much rjpple 

ratio is sacrificed to attain a given side-lobe pattern. 

Figure 3.10 shows enlarged plots around the first null of three ultraspherical arrays 

designed with N = 31, w, = 0.5 rad/s (0, = 28.6479 deg), and S = - 10,0, and 10 dB. 

The first side-lobe peak is 4.38 dB less for the case S = -10 dB and 3.84 dB more for 

the case S = 10 relative to the peak for the case S = 0 (i.e., the Dolph-Chebyshev array). 

On the other hand, the furthest side-lobe peak (not shown) is 5.62 dB more for S = -10 

and 6.16 dB less for S = 10 dB relative to the peak for S = 0. The ripple ratio for the 

Dolph-Chebyshev array is given by Eq. (3.22) as -58.35 dB. An important observation 

is that the positioning of the second null weighs heavily on the amplitude of the first side 

lobe, which, in turn, is very important in determining the amplitude of the remaining side 

lobes. To this extent, an alteration in the amplitude of the first side lobe greatly influences 

the amplitude of the remaining side lobes in an inverse fashion, i.e., increasing the first 

side-lobe amplitude decreases most of the remaining side-lobe amplitudes. Experimental 

results indicate that the side lobe envelope of the ultraspherical array tends to cross that of 

the Dolph-Chebyshev array within the first three side lobes adjacent to the main lobe. In 

this respect, negative S values are preferred to the Dolph-Chebyshev array for narrowband 

interference sources that are confined to this region. Alternatively, positive S values are 
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8 (degrees) 

Figure 3.10. AF for the ultrasperical array of length N = 31 and 8, = 28.6479 deg for 

the cases where S = 0 dB (solid line), S = -10 dB (dashed line), and S = 10 dB (dotted 

line). 

preferred for interference sources that fall past this region. Using the methods proposed 

in this chapter, antenna array designers are provided with an easy-to-use visual design 

approach for deciding what amount of trade-off between side-lobe pattern and ripple ratio 

is best for their particular situation. 

3.6.2 Image Processing 

With the ever-expanding gamut of computer monitors, hand-held devices such as digital 

cameras and video recorders, and high-end medical imaging systems, consumers can often 

base purchasing decisions on a few key image quality measures. One such measure is 

an image's contrast ratio (CR) which, simply put, defines the difference in light intensity 

between the darkest black and brightest white shades within an image. A high CR allows 
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one to discern detailed differences between colors producing a crisp and sharp image. On 

the other hand, a low CR results in a blurring or smearing effect producing an image with 

little clarity. A direct consequence of the CR measure is its effect on an imaging system's 

capability to detect low-contrast objects residing near high-contrast objects, which can be 

of the utmost importance in some medical imaging applications, e.g., detecting cancerous 

tumors. Also, interpretation of an image's quality has been shown, through human trials, 

to be directly related to the CR measure [32]. 

A number of imaging systems such as synthetic aperture radar (SAR) [33], computer- 

ized tomography (CAT scans) [33], and charge-coupled device (CCD)-based X-rays [34] 

construct images by using two-dimensional windowed inverse DFTs on spatial frequency- 

domain data. For these systems CR tolerance is usually specified in terms of the worst-case 

spectral leakage of the window function used, which is directly related to the window's 

main-lobe to side-lobe energy ratio (MSR). Strictly speaking, the CR is defined as [35] 

CR = 
Es + Em 

= 1 + MSR 
Es 

where the side-lobe and main-lobe energies are given by 

and 

respectively, and MSR = E,/Es. By referring to the window's spectral representation as 

the inner product of the Fourier kernel 

with the window coefficient vector w ,  i.e., w(ejWT) = wTv,  the side-lobe energy E, can 

be expressed in the form 

ES = W ~ Q W  (3.27) 
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where 

and V = vv*. The elements of Q are given by 

- (wT/)sinc[wT(m - n)] for m # n 
(3.29) 

1 - uT/r for m = n 

where Q is a real, symmetric, positive-definite Toeplitz matrix. Using Parseval's theorem, 

the total energy is found as 

where a simple rearrangement yields the main-lobe energy Em. Thus a window's CR can 

be calculated as 

Using the flexible three-parameter ultraspherical window for the windowing operation, 

the side-lobe patterns can be easily adjusted to alter the energy contained in the side lobes 

and, consequently, the value of the CR measure. Figure 3.11 shows plots of the normalized 

CR vs. the side-lobe roll-off ratio S in dB for various main-lobe half-width quantities. The 

curves are convex with easily-discernible global maximum values. As such, the ultraspher- 

ical window that possesses the maximum CR for a given window length N and main-lobe 

width w, can be found through the appropriate selection of S. This can be accomplished by 

solving the one-dimensional optimization problem 

w'w 
minimize F = -CR = - 
SL<S<SH W ~ Q W  

where vector w  is calculated using Eq. (2.1) and the techniques described in Sections 3.2.1 

and 3.2.3, the Q matrix is calculated using Eq. (3.29), SL = 0 dB, and SH = 30 dB. For 

the example with N = 31 and w, = 0.4 radls, the solution of Eq. (3.32) yields a maximum 

CR value of 41 .O1 dB occurring at S = 17.75 dB. The corresponding parameters for the 

ultraspherical window are ,LL = 1.0810 and x, = 1.0166. 
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Figure 3.11. The normalized CR vs. side-lobe roll-oflratio S with various main-lobe half 

width quantities for the ultraspherical window of length N = 31. 

Conclusions 

A method for selecting the parameters of the ultraspherical window so as to achieve pre- 

scribed spectral characteristics has been proposed. The method comprises a collection of 

techniques that can be used to determine the independent parameters of the ultraspheri- 

cal window such that a specified ripple ratio, main-lobe width or null-to-null width along 

with a specified side-lobe roll-off ratio can be achieved. The Kaiser, Saramaki, and Dolph- 

Chebyshev two-parameter windows can yield a specified ripple ratio and main-lobe width; 

however their side-lobe patterns cannot be controlled as in the proposed method. Exper- 

imental results have shown that the desired characteristics can be achieved with a high 

degree of precision. A difference in the performance of the ultraspherical and Kaiser win- 

dows has been identified, which depends critically on the required specifications. A rule for 

selecting either the ultraspherical or Kaiser window based on the performance difference 
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was proposed. In addition, an expression is provided that can be used to judge how much 

ripple ratio is sacrificed to attain a given side-lobe pattern when compared to the Dolph- 

Chebyshev pattern. This is useful for antenna array designers who may need to trade-off 

between side-lobe pattern and ripple ratio for the application at hand. The proposed method 

can also be used to increase the contrast ratio in imaging systems that construct images by 

using two-dimensional windowed inverse DFTs on spatial frequency-domain data. 



Chapter 4 

Design of Nonrecursive Digital Filters 

Using the Ultraspherical Window 

4.1 Introduction 

Nonrecursive digital filters are usually designed to have a symmetrical impulse response 

thereby achieving linear phase (or constant group delay) and filter realizations with a re- 

duced number of multiplications. Comparisons between different digital filter types (re- 

cursive and nonrecursive) and their attributes (linearity, time variance, and casuality) can 

be found in [ I ]  and [36]. One popular method for nonrecursive digital-filter design is the 

window method which was discussed in Section 1.6 along with the weighted-Chebyshev 

method. As mentioned, the window method is based largely on closed-form solutions and 

as a result it is straightforward to apply and entails a relatively insignificant amount of com- 

putation; however, it usually yields suboptimal designs whereby the filter order required to 

satisfy a given set of specifications is not the lowest that can be achieved. The window 

method is useful when computational requirements for digital-filter design must be kept to 

a minimum such as in applications where the design has to be carried out on-line in real or 

quasi-real time. Simple signal processing algorithms and structures [37] can address these 

problems by trading between the accuracy of results and the utilization of implementation 

resources. In [38], [39] a window-based algorithmic approach to the design of low-power 

frequency-selective digital filters is presented whereby reduction of the average power con- 
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sumption of the filter is achieved in speech processing and high-fidelity hardware by dy- 

namically varying the filter length based on signal statistics. In these applications, flexible 

windows that allow one to achieve prescribed filter specifications with reduced filter length 

and whose coefficients can be generated quickly are highly desirable. 

In this chapter, the window method for digital-filter design is used in conjunction with 

the ultraspherical window to design nonrecursive digital filters, digital differentiators, and 

Hilbert transformers so as to achieve prescribed specifications with minimal design compu- 

tation and reduced filter length (as compared with designs obtained using other windows). 

The chapter is structured as follows. Section 4.2 introduces relevant information concern- 

ing the window method. Section 4.3 proposes a choice for the ultraspherical window's 

parameters that yield prescribed specifications. Section 4.4 provides a concise algorithm 

for the filter design. Section 4.5 provides comparisons with designs based on other win- 

dows as well as designs based on the Remez algorithm. Section 4.6 describes methods for 

highpass, bandpass, and bandstop filter design. Section 4.7 deals with the design of digital 

differentiators and Hilbert transformers so as to achieve prescribed specifications. Section 

4.8 provides design examples. Section 4.9 provides concluding remarks. 

4.2 Window Method 

In the window method, an idealized frequency response is assumed and upon the applica- 

tion of the Fourier series, an infinite-duration impulse response is obtained. For a lowpass 

filter. we have 

where w, and w, are the cutoff and sampling frequencies, respectively. The infinite-duration 

impulse response is obtained as 
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where -m < n < oo. The design of highpass, bandpass, and bandstop filters is discussed 

later. A realizable filter is obtained by multiplying the infinite-duration impulse response 

by the window function, i.e., by letting 

where w(nT) is a window function of length N = 211.1 + 1. The idealized impulse response 

hid (nT) requires an jnsigni ficant amount of computation and, therefore, the computation 

required to design a filter is practically the same as that required for the calculation of the 

coefficients of the window, which was addressed in Chapter 2. If N is odd, M is an integer 

and In1 = {0 ,1 ,2 ,  ..., hf) is used for both the window and impulse response. If N is 

even, M is a fraction and In1 = {0.5,1.5,2.5,  . .. , h1) is used [I]. Odd-length nonrecursive 

filters are assumed throughout because the frequency response of an even-length symmetric 

nonrecursive filter is 0 at the Nyquist frequency, which is inappropriate for highpass and 

bandstop filters. However, this property of even-length nonrecursive filters can be used for 

the design of Hilbert transformers as discussed later. A causal filter can be obtained by 

delaying the impulse response by a period MT, i.e., 

h(nT) = ho [(n - Ad) T ]  for 0 5 n < N - 1 (4.4) 

The frequency response of the filter is given by the convolution of the idealized fre- 

quency response and the spectral representation of the window, i.e., 

where W (e jwT)  is given by Eq. (1.1 1). 

4.3 Choice of Window Parameters 

A nonrecursive (noncausal) lowpass filter is typically required to satisfy the equations 

1 - 6 P - < H (ejwT)  5 1 + G, for lw 1 E [O,  up] 

-6, < H (ejWT)  < 6, for Iw 1 E [w,, w,/2] 
(4.6) 
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where 6, and 6, are the passband and stopband ripples and w, and w, are the passband and 

stopband edge frequencies, respectively. In nonrecursive filters designed using the window 

method, the passband ripple turns out to be approximately equal to the stopband ripple, 

i.e., 6, E 6,. Therefore, one can design a filter that has a prescribed passband ripple or 

a prescribed stopband ripple. If the specifications call for a maximum passband ripple A, 

and a minimum stopband attenuation A,, both specified in dB, then it can easily be shown 

that [ I ]  

By designing a filter on the basis of 

then if S = S, a filter will be obtained that has a passband ripple which is equal to A, dB 

and a minimum stopband attenuation which is greater than A, dB; and if 6 = 6, a filter 

will be obtained that has a minimum stopband attenuation which is equal to A, dB and a 

passband ripple which is less than A, dB. 

The ultraspherical window parameters p, x,, and N, must be chosen such that the fil- 

ter specifications are satisfied with the lowest possible filter length N. For a given set of 

prescribed specifications the optimum values of p and x, could be determined through a 

trial-and-error approach but such an approach would be laborious and time consuming. 

Fortunately, a fairly general method that parallels Kaiser's method [7] can be used to de- 

sign filters that would satisfy arbitrary prescribed filter specifications. Through extensive 

experimentation, we found out that parameters p and x, control the passband and stopband 

ripples and, consequently, the actual stopband attenuation, namely, 

Strictly speaking, parameter x, alters the window's ripple ratio at the expense of the null- 

to-null width, in effect, providing a trade-off between the two just like parameter a in the 

Kaiser window [7] and parameter xo in the Dolph-Chebyshev window [9]. Thus x, has 
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a strong influence on the stopband attenuation. On the other hand, parameter p controls 

the window's side-lobe pattern which affects the stopband attenuation but not to the extent 

that x, does. This property is observed in Fig. 2.2 where windows with p = 0 and 1 yield 

ripple ratios of -45.84 and -39.85 dB, respectively. On the other hand, the filter length N 

controls the transition bandwidth of the filter, namely, 

but has little effect on the stopband attenuation. Consequently, the required value of N is 

dependent on parameter p while being relatively independent of parameter x,. 

The value of parameter p that minimizes the filter length for a set of prescribed spec- 

ifications can be determined by comparing the performance of filters designed using the 

ultraspherical window with varying values of the adjustable parameters for a fixed filter 

length and cutoff frequency as in [S]. The transition bandwidth is measured from the re- 

sulting filter and used to calculate the performance measure 

which is a normalized transition bandwidth that is approximately independent of the filter 

length [7], [S], [28]. Figure 4.1 shows plots of the stopband attenuation vs. D for filters 

designed using the ultraspherical window with p = 0, 0.4, 0.6, and 1. As can be seen, the 

filter performance depends critically on the choice of parameter p. In addition, we note 

that there is no unique fixed value of p that yields minimum stopband attenuation, i.e., the 

optimal value of p changes with D. As such, it is possible to select an optimal value of 

p that minimizes the filter length for a set of prescribed specifications. The value of p 

that minimizes the filter length was found by calculating the value of p that maximizes the 

stopband attenuation for a given normalized transition bandwidth D. Through curve fitting, 

an empirical formula for the optimal p was derived as 
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Figure 4.1. Stopband attenuation vs. D forfilters designed using the ultraspherical win- 

dow with p = 0 (dash-dotted line), 0.4 (dashed line), 0.6 (dotted line), and 1 (solid line) 

for thejilter design parameters N = 127, w, = 0 . 4 ~  rad/s, and ws = 27r rads. 

This estimate provides relatively accurate predictions for p for most practical purposes, i.e., 

it holds true for low as well as high values of N. 

The minimum filter length required so as to achieve a desired stopband attenuation and 

transition bandwidth can be determined as the smallest odd integer satisfying the inequality 

From Eq. (4.13) it becomes clear that N can be predicted by obtaining an accurate ap- 

proximation for D. As can be observed in Fig. 4.1, D is influenced by both the stopband 

attenuation and the parameter p. Through curve fitting, an empirical formula was deduced 
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for D corresponding to the value of p given by Eq. (4.12) as 

4.645 x 1OP5A2 + 6.216 x 10P2A, - 4.818 x loP1 for A, L: 80 = {  (4.14) 
1.710 x I O - ~ A ~ ,  + 7.089 x 1OP2A, - 8.937 x loP1 for A, > 80 

The final window parameter x, provides a trade-off between the stopband attenuation 

and the transition bandwidth of the filter and can be determined using Eq. (2.22). It is 

clear that parameter x, can be predicted by obtaining an approximation for parameter P. 

Figure 4.2 shows plots of parameter P vs. stopband attenuation for filters designed using the 

ultraspherical window with p = 0, 0.4, 0.6, and 1. As can be seen, ,8 varies significantly 

depending on the choice of the stopband attenuation and parameter p. Through curve 

fitting, an empirical formula was derived for parameter ,8, which corresponds to the value 

of p given by Eq. (4.12), as 

4.024 x ~ o - ~ A :  + 2.423 x ~ o - ~ A ,  + 3.574 x loP1 for A, < 60 

7.303 x 10-5A2, + 2.079 x 10P2A, + 4.447 x 10-I for 60 < A, < 120 

6.733 x IO-~A: + 3.337 x 1oP2A, - 1.192 x 10-I for 120 < A, < 180 
(4.15) 

Equations (4.12), (4.13), (4.14), and (4.15) provide a closed-form Kaiser-like method 

for achieving prescribed specifications while minimizing the filter length N through the 

appropriate selection of the window parameters. However, for some applications one may 

be willing to increase N so as to achieve different frequency selectivity characteristics. 

For instance, increased stopband roll-off, i.e., increased suppression of stopband energy 

furthest from the transition bandwidth (see [40]), can be achieved by increasing parameter 

p but this has the effect of decreasing the stopband attenuation. Thus to achieve the same 

stopband attenuation, N must be increased. To accommodate for these scenarios, estimates 

for D and p were obtained as 

D = aAE + bA, + c 
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Figure 4.2. Parameter P vs. stopband attenuation forJilters designed using the ultraspher- 

ical window with p = 0 (dash-dotted line), 0.4 (dashed line), 0.6 (dotted line), and 1 (solid 

line) for thejlter design parameters N = 127, w, = 0 . 4 ~  radh, and w, = 2~ rads. 

and 

( a2 A: + b2 A, + c2 for A, > 60 

for the values p = (0, 0.1, 0.2, ..., 1.0) where the model coefficients are given in Tables 

4.1 and 4.2, respectively. The estimate for D should be used in conjunction with Eq. (4.13) 

to predict the required value of N for the particular selection of p and a set of prescribed 

filter specifications. Estimates for D and ,L? that correspond to values of ,u in the range [O,1 ]  

that are not included in Tables 4.1 and 4.2 can be obtained using cubic spline interpolation 

where (pi): = (0, 0.1, 0.2, ..., 1.0) are the abscissa values and (Di): and (Pi): are their 

corresponding ordinate values (see Chap. 7 of [4 11). This window-parameter alteration 

technique can provide designers with a simple approach for tailoring a filter's frequency 

selectivity for a particular application while still achieving prescribed specifications. 



4.3 Choice of Window Parameters 69 

Table 4.2. Model Coejficients for Parameter ,8 

Table 4.1. Model Coejficients for Parameter D 

P 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

a b c 

-4.198E-5 7.784E-2 -7.778E- 1 

-2.961E-5 7.574E-2 -7.659E- 1 

- 1.747E-5 7.348E-2 -7.369E- 1 

-5.808E-6 7.109E-2 -6.924E- 1 

6.462E-6 6.844E-2 -6.266E- 1 

3.221E-5 6.408E-2 -5.048E- 1 

6.1 11E-5 5.957E-2 -3.733E- 1 

7.789E-5 5.736E-2 -3.O6lE- I 

6.328E-5 5.975E-2 -3.53 1E- 1 

3.620E-5 6.391E-2 -4.377E- 1 

1.532E-5 6.717E-2 -4.974E- 1 
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4.4 Design Algorithm 

Based on findings from the previous section, a lowpass nonrecursive filter that would satisfy 

the specifications 

Passband edge: w, 

Stopband edge: w,  

Passband ripple: A, 

Stopband ripple: A, 

Sampling frequency: w, 

can be designed using the following algorithm: 

Algorithm 4.1 Lowpass filter design using the ultraspherical window 

Step 1: Input w,, w,, A,, A,, and w,. Find the 'design' 6 using Eq. (4.8) and then 

update A, using Eq. (4.9). 

Step 2: Calculate the window parameter ,LL using Eq. (4.12). 

Step 3: Calculate the filter length N using Eq. (4.13) in conjunction with Eqs. (4.10) 

and (4.14). Round N up to the nearest odd integer. 

Step 4: Calculate the window parameter x, using Eq. (2.22) in conjunction with 

Eq. (4.15) and the method described in Algorithm 2.1 for calculating x$),,, . 

Step 5: With p, x,, and N known, the coefficients of the ultraspherical window can 

be generated from Eq. (2.47). 

Step 6: Calculate the relevant terms of the infinite-duration impulse response using 

Eq. (4.2) with w,  = (w, + w,)/2.  

Step 7: Obtain the noncausal finite-duration impulse response using Eq. (4.3). 

Step 8: Obtain the causal design using Eq. (4.4). 

Step 9: Check the design obtained to ensure that the filter satisfies the prescribed 

specifications. If it does not, increase N by 2 and go to Step 4. 
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4.5 Comparison with Other Windows 

The performance of different windows was compared by designing filters for fixed values 

of N and w, [$I. The transition bandwidth for the resulting filters was measured and used 

to calculate D using Eq. (4.1 1). Figure 4.3 shows plots of the stopband attenuation vs. D 

for N = 127, w, = 0 . 4 ~  radls, and w, = 27i radls for a variety of fixed and adjustable win- 

dows. Expressions for these windows can be found in [I], [5] ,  while the Nuttall window 

is described in [42]. For the adjustable windows (Kaiser, Dolph-Chebyshev, Saramaki, 

ultraspherical, and Gaussian windows) a number of filters were designed by altering the 

independent window parameter. As can be seen, the ultraspherical window offers better 

performance than the Kaiser, Dolph-Chebyshev, Saramaki, and Gaussian windows achiev- 

ing an average increase in the stopband attenuation of 2.48 dB relative to that in the Kaiser 

window, 4.29 dB relative to that in the Dolph-Chebyshev window, and 2.21 dB relative to 

that in the Saramaki window. The Gaussian window provides much poorer results than 

the other adjustable windows. For the sake of comparison, equiripple designs based on 

the weighted-Chebyshev method of Parks-McClellan [I71 were also carried out assuming 

equal values for the passband and stopband ripples, i.e., 6, = 6,. The weighted-Chebyshev 

method increases the stopband attenuation by about 2.93 dB on the average but this is to be 

expected since the Remez algorithm yields designs that are L, optimal. 

The performance of different windows was also compared by finding the required filter 

length so as to achieve a set of prescribed specifications. Figure 4.4 shows plots of the 

actual stopband attenuations achieved for a fixed transition bandwidth of Bt = 0.2 radls 

and filter length N for lowpass filters designed using the Kaiser, Dolph-Chebyshev, and 

ultraspherical windows. Results for the Saramaki window have been omitted as they are 

very similar to those of the Kaiser window. The filters were designed so as to achieve the 

transition bandwidth Bt = 0.2 radls to a high degree of precision by fine tuning the in- 

dependent window parameter using optimization techniques. As can be seen, for a given 

filter length, the ultraspherical window increases the stopband attenuation relative to the 
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Ultraspherical window - 
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Figure 4.3. Stopband attenuation vs. D for filters designed using various windows with 

N = 127 and w, = 0 . 4 ~  radsh. Results for equiripple filters of the same length with 

6, = 6, are included for comparison. 

attenuation in the Kaiser and Dolph-Chebyshev windows achieving on the average an in- 

crease of 2.61 dB relative to that in the Kaiser window and 4.49 dB relative to that in the 

Dolph-Chebyshev window. Alternatively, for prescribed specifications the ultraspherical 

window yields lower-order filters than the Kaiser or Dolph-Chebyshev windows. On the 

other hand, the weighted-Chebyshev method increases the stopband attenuation relative to 

that in the ultraspherical window by about 2.76 dB on the average. Filters designed using 

the weighted-Chebyshev method were designed with equal values for the passband and 

stopband ripples. 



4.6 Highpass, Bandpass, and Bandstop Filters 73 

Figure 4.4. Actual stopband attenuation A, achieved byjlters designed with length N and 

transition bandwidth Bt = 0.2 rad/s. The equiripplejlters were designed with 6, = 6,. 

4.6 Highpass, Bandpass, and Bandstop Filters 

The above design method can be readily extended to the design of highpass, bandpass, 

and bandstop filters by following the procedure in [I] .  For instance, the specifications for 

highpass filters assume the form 

-6, < H (ejwT)  < 6, for (w ( E [0, w,] 

1 - 6, 5 H(ejwT) 5 1 +6, for Iwl E [w,,w,/2] 

The ideal frequency response is taken as 

0 for Iw 1 < w, 
Hi&jWT) = { 

1 forw, < IwI 5 w,/2 
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with w, = (w, + w,)/2. Straightforward analysis gives the infinite-duration impulse re- 

sponse as 

1 - W,/T for n = 0 
hid(nT) = (4.20) { I; sin wcnT for n # 0 

The transition bandwidth in Eq. (4.13) is 

The specifications for bandpass filters assume the form 

-6, < H(ejwT) < 6, for Iwl E [O: wall 

1 - 6, 5 H(ejwT) 5 1 + 6, for (w ( E [w,l, w,2] 

- 6 , < H ( e j w T ) < 6 ,  forIwIE[wa2,w,/2] 

The ideal frequency response is taken as 

with 

where the design is based on the narrower of the two transition bandwidths, i.e., 

Straightforward analysis gives the infinite-duration impulse response as 

sin(wc2nT) sin(wcl nT)  
hid(nT) = - for all n 

~n n n  

The specifications for bandstop filters assume the form 

1 - 6, < H (ejwT) < 1 + 6, for Iw 1 E [O, w,l] 

- 6, < H (ejWT) < 6, for I w I E [ w ~ I ,  ~ a 2 ]  

1-6,  5 ~ ( e j " ~ )  < 1 + 6 ,  for I w I  E [wp2,ws/2] 
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The ideal frequency response is taken as 

1 for0  5 Iwl 5 w , ~  

o for wcl < wl < a,:! 

1 forwCg < ( w J  < w,/2 

with 
Bt Bt 

W,I = wpl + - and w,:! = wp2 - - 
2 2 

where the design is based on the narrower of the two transition bandwidths, i.e., 

Straightforward analysis gives the infinite-duration impulse response as 

, -, ( 1 - (wC2 - wCl)/r  for n = o 
had(ny') = 1 sin wclnT - sin wC2nT 

for n # O 

With the above modifications, Algorithm 4.1 can also be used to design highpass, band- 

pass, and bandstop filters as well as multiband filters [43]. 

4.7 Digital Differentiators and Hilbert Transformers 

One advantage of the window method is the ease with which it can be applied to a wide 

range of filter design problems. In this section, we employ the window method for the 

design of digital differentiators and Hilbert transformers. 

4.7.1 Digital Differentiators 

In signal processing, the need often arises for the derivative of a signal at some time instant 

t = t l .  For example, if y(nT) is required to be the first derivative of x ( t )  at t = nT,  we 

can write 
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Digital difirentiators (DDs) have an ideal frequency response 

H ( e j w T )  = jw  for Iw/ < w,/2  (4.33) 

Since differentiators amplify high frequency errors such as instrumentation measure- 

ment errors, band-limited differentiators are quite useful. Practical band-limited differen- 

tiator design can be accomplished in terms of a nonrecursive filter whose frequency re- 

sponse is required to satisfy the equations 

j  ( w  - bP) < H (e jWT)  5 j  ( w  + 6,) for Iw 1 E [0, w,] 

For a band-limited differentiator, the ideal frequency response is taken as 

with w,  = (w,  + w a ) / 2 .  Straightforward analysis gives the infinite-duration impulse re- 

sponse as 
w, cos (nw,) sin (nw,) 

- for n # 0 
hid(nT) = nn- n 2 ~  (4.36) 

for n = 0 

The transition bandwidth in Eq. (4.13) is 

In DDs the passband ripple and stopband attenuation are dependant on the cutoff frequency 

of the differentiator. To account for this, a correction factor for A, of the form 

is required where A: is the corrected design attenuation whose value replaces A, in Algo- 

rithm 4. l ,  A, is the desired design attenuation, and A,,, is a correction factor given by 

Acor = aw; + bw, + c (4.39) 

The values of the coefficients a ,  b, and c for the Kaiser, Dolph-Chebyshev, and ultraspheri- 

cal windows are given in Table 4.3. Examples of differentiators designed using the window 

method and Remez algorithm can be found in [I]. 
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Table 4.3. Estimate Coeflcients for Parameter A,,, 

Window Function / a b c 

4.7.2 Hilbert Transformers 

Kaiser 

Dolph-Chebyshev 

ultraspherical 

In signal processing, it is sometimes necessary to form an analytic signal [I] ,  which can be 

generated by a complex filter with frequency response 

2.422 -13.73 10.86 

2.700 - 14.23 12.25 

1.506 -11.10 8.170 

where H(e jwT)  is a Hilbert transformer which has an ideal frequency response given by 

Practical Hilbert transformer design can be carried out by designing a nonrecursive filter 

whose frequency response is required to satisfy the equations 

j(-1 - 6,) < H(ejwT)  < j ( -1  + 6,) for w E [-w,/2, -wpl] 

Straightforward analysis gives the infinite-duration impulse response as 

2 , nn 
- sin - for n # 0 

2 

1 0  for n = 0 

The transition bandwidth in Eq. (4.13) is 

Like differentiators, it was found that Hilbert transformers required a correction factor for 

A, of the form 

A: = Aa + ACor (4.45) 



where A/, is the corrected design attenuation whose value replaces A, throughout Algo- 

rithm 1, A, is the desired design attenuation in dB, and A,,, is a correction factor given 

by A,,, = 6.414, 5.236, and 6.457 for the Kaiser, Dolph-Chebyshev, and ultraspherical 

windows, respectively. 

Examples 

Example I :  Design a lowpass$lter with wp = 1, w, = 1.2 radh, and A, = 80 dB using 

the Kaiser, Dolph-Chebyshev, and ultraspherical windows. 

The adjustable parameters for the Kaiser, Dolph-Chebyshev, and ultraspherical win- 

dows were calculated as a = 7.857, P = 2.803, and ,B = 2.574, respectively. The ad- 

justable parameter a was calculated using the expression found in [ I ]  while /3 was cal- 

culated using Eqs. 4.10 and 4.17 for the ultraspherical and Dolph-Chebyshev windows, 

respectively. The additional parameter calculated for the ultraspherical window was p = 

0.6173. The stopband attenuations achieved were 79.38, 82.27, and 79.36 dB with transi- 

tion bandwidths 0.1987, 0.1994, and 0.1965 radls, respectively. 

To achieve the desired specifications more precisely a simple technique described in 

[6] can be employed. First, the actual stopband attenuation of the filter A,, is measured 

for the estimated value of p. Then /3 is re-estimated using an adjusted design attenuation 

A/, = A, - (A,, - A,) where A, is the desired design stopband attenuation. With this 

modification, the re-estimated parameters assume the values a = 7.926, P = 2.725, and 

= 2.596 respectively. The stopband attenuations were 80.03, 79.96, and 79.83 dB with 

transition bandwidths 0.2005, 0.1923, and 0.1983 radls, respectively. The filter lengths 

required so as to achieve the specifications were N = 159 for the Kaiser window, N = 165 

for the Dolph-Chebyshev window, and N = 153 for the ultraspherical window. Figure 4.5 

shows the amplitude responses of the designed filters. 

Example 2: Design a bandstop filter with wpl = 0.5, w , ~  = 0.7, w,z = 2.0, wp:! = 2.2 

rad/s, and A, = 40 dB using the Kaisel; Dolph-Chebyshev, and ultraspherical windows. 
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Figure 4.5. Example I :  Amplitude responses of lowpass filters designed using various 

window functions. (a)  Kaiser window. (b)  Dolph-Chebyshev window. (c)  Ultraspherical 

window. 
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The adjustable parameters for the Kaiser, Dolph-Chebyshev, and ultraspherical win- 

dows were calculated as a = 3.395, ,B = 1.471, and @ = 1.391, respectively. The addi- 

tional parameter calculated for the ultraspherical window was ,LL = 0.5960. The stopband 

attenuations achieved were 41.34, 37.36, and 38.40 dB with transition bandwidths 0.1963, 

0.2027, and 0.2033 radls, respectively. Using the modification discussed in Example 1 

to improve stopband attenuation accuracy, the re-estimated parameters assume the values 

a = 3.235, /3 = 1.554, and ,D = 1.420, respectively. The stopband attenuations were 

39.92, 40.07, and 39.94 dB with transition bandwidths 0.1905, 0.2 188, and 0.2 125 radls, 

respectively. The filter lengths required so as to achieve the specifications were N = 73 

for the Kaiser window, N = 73 for the Dolph-Chebyshev window, and N = 67 for the 

ultraspherical window. Figure 4.6 shows the amplitude responses of the designed filters. 

Example 3: Design a band-limited digerentintor with w, = 1.0, w, = 1.5 radh and 

A, = 50 dB using the Kaiser; Dolph-Chebyshev, and ultraspherical windows. 

The adjusted design attenuations from Eq. (4.38) for the Kaiser, Dolph-Chebyshev, and 

ultraspherical windows were calculated as A: = 52.52, 51.32, and 53.35, respectively. 

The adjustable parameters were calculated as a = 4.829, /3 = 1.834, and P = 1.765, 

respectively, while the additional parameter for the ultraspherical window was calculated 

as p = 0.4994. The design attenuations achieved were 51.95, 47.91, and 49.28 dB with 

transition bandwidths 0.493 1, 0.4959, and 0.4759 radls, respectively. Using the modifi- 

cation discussed in Example 1 to improve design attenuation accuracy, the re-estimated 

parameters assume the values a = 4.613, P = 1.990, and ,B = 1.785, respectively. The 

attenuations were 50.34, 52.86, and 49.93 dB with transition bandwidths 0.4734, 0.5446, 

0.4833 radls, respectively. The filter lengths required so as to achieve the specifications 

were N = 41 for the Kaiser window, N = 41 for the Dolph-Chebyshev window, and 

N = 39 for the ultraspherical window. Figure 4.7 shows the amplitude responses of the 

designed differentiators. 

Example 4: Design a Hilbert transformer with w,l = 0.2 rad/s and A, = 80 dB using 

the Kaiser; Dolph-Chebyshev, and ultraspherical windows. 
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Figure 4.6. Example 2: Amplitude responses of bandsop filters designed using various 

window functions. (a )  Kaiser window. (b) Dolph-Chebyshev window. (c)  Ultraspherical 

window. 
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Figure 4.7. Example 3: Amplitude responses of band-limted diferentiators designed us- 

ing various window functions. (a )  Kaiser window. (b) Dolph-Chebyshev window. (c)  

Ultraspherical window. 
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The adjusted design attenuations from Eq. (4.45) for the Kaiser, Dolph-Chebyshev, and 

ultraspherical windows were calculated as A: = 86.41, 85.24, and 86.46, respectively. 

The adjustable parameters were calculated as a = 8.564, P = 2.983, and ,LI = 2.789, 

respectively, while the additional parameter for the ultraspherical window was calculated 

as p = 0.6445. The design attenuations achieved were 80.12, 79.59, and 79.39 dB with 

transition bandwidths 0.3941, 0.3889, and 0.3847 radls, respectively. Using the modifi- 

cation discussed in Example 1 to improve design attenuation accuracy, the re-estimated 

parameters assume the values a = 8.550, /3 = 2.997, and ,G' = 2.809, respectively. The 

attenuations were 79.96, 80.01, and 79.93 dB with transition bandwidths 0.3935, 0.391 2, 

and 0.3879 radls, respectively. The filter lengths required so as to achieve the specifica- 

tions were N = 88 for the Kaiser window, N = 90 for the Dolph-Chebyshev window, and 

N = 86 for the ultraspherical window. Figure 4.8 shows the amplitude responses of the 

designed Hilbert transformers. 

4.9 Conclusions 

An efficient method for designing nonrecursive digital filters based on the ultraspherical 

window has been proposed. Economies in computation are achieved in two ways. First, 

by using the efficient formulation of the window coefficients presented in Chapter 2, the 

amount of computation required is reduced to a small fraction of that required by stan- 

dard methods. Second, the filter length and the independent window parameters that would 

be required so as to achieve prescribed specifications in lowpass, highpass, bandpass, and 

bandstop filters as well as in digital differentiators and Hilbert transformers are efficiently 

determined through empirical formulas. The ultraspherical window yields lower-order fil- 

ters relative to designs obtained using other windows yielding on the average a reduction of 

3.07% relative to the Kaiser window, 2.86% relative to the Saramaki window, and 5.30% 

relative to the Dolph-Chebyshev window. Alternatively, for a fixed filter length, the ultras- 

pherical window increases the stopband attenuation relative to the other windows achieving 
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Figure 4.8. Example 4: Amplitude responses of Hilbert transformers designed using var- 

ious window functions. (a )  Kaiser window. (b )  Dolph-Chebyshev window. (c)  Ultraspheri- 

cal window. 
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on the average an increase of 2.61 dB relative to the Kaiser window, 2.42 dB relative to the 

Saramaki window, and 4.49 dB relative to the Dolph-Chebyshev window. On the other 

hand, the weighted-Chebyshev method increases the stopband attenuation relative to that 

of the ultraspherical window by about 2.76 dB on the average; however, the computation re- 

quired by the weighted-Chebyshev method is far greater than that required by the proposed 

method. 



Chapter 5 

An Efficient Closed-Form Design 

Method for Cosine-Modulated Filter 

Banks 

5.1 Introduction 

A fundamental system used in multirate applications is the M-channel maximally-decimated 

filter bank. For cosine-modulated filter banks (CMFBs) the analysis and synthesis filters 

are cosine-modulated versions of a lowpass prototype filter which is typically designed to 

minimize three error components (amplitude distortion, phase distortion, and aliasing) that 

are inherent in the system. An early design method for CMFBs was proposed by Creusere 

and Mitra [46] who used the weighted-Chebyshev method to design the prototype filter. 

Next, Lin and Vaidyanathan [47] used the Kaiser window approach to design the proto- 

type filter while, recently, Cruz-RoldBn et a]. [48] modified this method to include other 

windows. These methods are iterative and, therefore, they are not suitable for applications 

where the design must be carried out in real or quasi-real time such as in the perceptual cod- 

ing of digital audio [44] and heartbeat detection in ECG signals [45]. For such applications 

a closed-form window method is preferred. 

In this chapter, a closed-form method for designing prototype filters for M-channel 

CMFBs so as to achieve a prescribed stopband attenuation and channel overlap is proposed. 
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The chapter is structured as follows. Section 5.2 reviews the design of CMFBs using the 

window method. Section 5.3 presents a closed-form method for designing prototype filters 

for CMFBs using the ultraspherical window. Section 5.4 presents a design example and 

compares the reconstruction error of CMFBs designed by the proposed method as well as 

the amount of computation required to design them with those of CMFBs designed by other 

known methods. 

5.2 Design of CMFBs Using the Window Method 

The input-output relations for an ill-channel CMFB are given by [49] 

1 
Z(z) = - F ~ ( ~ ) H ~ ( ~ M I ~ )  for 1 = I , . .  . , hl - 1 

hf 
k=O 

In the above expressions, To(z) is the transfer function of the filter bank, z(z) for 1 5 I 5 

A4 - 1 are the aliasing transfer functions, and Hk(z) and Fk(z) are the individual transfer 

functions of the analysis and synthesis filters, respectively. The impulse responses for the 

analysis and synthesis filters are of length N and are given by [49] 

for k = 0,1, . . . , M - 1. h,(n) is the impulse response of a linear-phase nonrecursive 

prototype filter of length N and 

Wk = 
(2k + l)7r k 7 r  

2M 
and ek = (-1) - 

4 
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The reconstruction errors are measured by examining the frequency response of the 

filter bank. First, there is no phase distortion in the system because the filter bank has a 

linear phase characteristic. Second, the error in the amplitude response of the filter bank is 

given by 

e,(w) = 1 - I ~ ~ ( e j ~ ) l  for w E [0, T] 

Third, the worst-case and total aliasing distortion of the filter bank are given by 

e,(w) = rnax  IT^ (e jw)  1 for w E [0, T] 
1<1<M-1 (5.8) 

Small reconstruction errors can be achieved by designing the lowpass prototype filter 

using the window method as described in Chapter 4. Prescribed stopband attenuation and 

channel overlap can be achieved by requiring the nonrecursive (noncausal) prototype filter 

to satisfy the lowpass filter specification given by Eq. (4.6). Closed-form methods for 

constructing the ultraspherical, Kaiser, and Saramaki windows so as to achieve prescribed 

lowpass specifications can be found in Chapter 4 of [ I ]  and in [8], respectively. 

5.3 Efficient Design of Prototype Filter 

The conditions for approximate reconstruction in a filter bank can be stated in terms of the 

frequency response of the prototype filter as [49] 

I ~ , ( e j " ) ( z O  for Iwl > ~ / n / i l  (5.10) 

The degree to which the first approximation is achieved influences the aliasing errors in- 

curred in Eqs. (5.8) and (5.9) in a directly proportional fashion, i.e., if (H,(ejw)( = 0 for 



5.3 Efficient Design of Prototype Filter 89 

lwl > T/M then no aliasing errors occur. Similarly, the degree to which the second ap- 

proximation is achieved influences the amplitude-response error in Eq. (5.7) in a directly 

proportional fashion. One way to reduce the amplitude-response error is to design the pro- 

totype filter so that the square of its amplitude response is approximately the same as the 

square of the amplitude response of a Nyquist (or 2hl-band) filter. By doing this, the neigh- 

boring shifted versions of the prototype filter's amplitude response in Eq. (5.1 1 )  overlap so 

that lTo(eJw)l is approximately allpass. To achieve this, it is required that IHp (ejw)12 ;;. 112 

at w = 7r/2M, or equivalently 

/ H~ ( e J w )  I = 1/& (5.12) 

The prototype filter is usually required to have a stopband attenuation of A, dB and a 

stopband edge frequency of 

where p is a system design parameter called the roll-offactor. Parameter p controls the 

channel overlap as illustrated in Fig. 5.1. 

The required design can be obtained by selecting the passband edge frequency wp so 

that ( ~ ~ ( e j " l ' " ) (  = I /&) .  This can be accomplished by solving the optimization problem 

subject to: 0 < wP < T / ~ M  

where M, A,, and p are the system design parameters. For each iteration, the computation 

of the objective function requires the re-estimation of the filter length and window param- 

eters as well as the calculation of the window coefficients and the infinite-duration impulse 

response of the filter. Simple one-dimensional optimization algorithms such as dichoto- 

mous, Fibonacci, or golden section line searches, as outlined in [27], can be used to solve 

the minimization in Eq. (5.14). 

The above design method was used to deduce empirical formulas that can be used to es- 

timate the passband edge frequency wP that minimizes the objective function in Eq. (5.14). 
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Figure 5.2 shows plots of the objective function vs. the performance measure 

for various values of p where D is a normalized measure of the passband edge frequency 

that is approximately independent from the number of channels. By examining a large 

number of designs, it was observed that the optimal solution for a given p remains ap- 

proximately the same (on the order of 0.01% difference in D) regardless of the number of 

channels, i.e., F vs. D does not change as M changes. Figure 5.3 shows plots of the result- 

ing optimal values of D vs. p for various values of A,. Through curve fitting, an empirical 

formula was derived for D in the form 

[ alp2 + b l p  + q for 0.5 5 p < 1.0 
D =  

where the model coefficients for the values A, = (-50, -60, -70, ..., -150) are given in 

Tables 5.1 and 5.2 for the ultraspherical and Kaiser windows, respectively. Model coeffi- 

cients for the Saramaki window have also been obtained but are not included. Estimates for 

D corresponding to values of A, in the range [-150, -501 that are not included in Tables 

5.1 and 5.2 can be obtained using cubic spline interpolation. 

The empirical formulas provide an accurate estimate of the optimal w, over a range of 

system design parameters, namely, M E {1,2,3,  ...), -150 5 A, 5 -50, and 0.5 5 p 5 

1.5. 

Based on the above findings, an M-channel CMFB with a prescribed stopband attenua- 

tion A, and a prescribed roll-off ratio p can be designed by using the ultraspherical, Kaiser, 

or Saramaki window. A design algorithm that can be used for the case of the ultraspherical 

window is as follows: 

Algorithm 1- Prototype filter design for CMFBs using the ultraspherical window 

Step 1: Input M, A,, and p. 

Step 2: Calculate the stopband ripple 6, using Eq. (4.7). 
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Table 5.1. Model Coeficients for D for the Ultraspherical Window in Eq. 5.16 (0.5 5 

Step 3: Calculate the stopband edge frequency w, using Eq. (5.13). 

Step 4: Calculate the parameter D in Eq. (5.16) using Table 5.1. 

Step 5: Calculate the passband edge frequency w, using 

Step 6: Using the parameters 6,, w,, and w,, calculate the ultraspherical window's 

parameters p, x,, and N and then its window coefficients. 

Step 7: Calculate the relevant terms of the infinite-duration impulse response using 

Eq. (4.2) with w, = (w, + wa) /2 .  

Step 8: Obtain the noncausal finite-duration impulse response for the prototype filter 

using Eq. (4.4). 

Algorithms that can be used with the Kaiser and Saramaki windows can be obtained by 

modifying Algorithm 5.1 in two locations. In Step 4, D in Eq. (5.16) is calculated using 



5.4 Design Example and Comparisons 93 

Table 5.2. Model CoefJicients for D for the Kaiser Window in Eq. 5.16 (0.5 5 p 5 1.5) 
I 

model coefficients that correspond to the Kaiser window (Table 5.2) and the Saramaki 

window (not inchded). Second, Step 6 requires equations that yield the window function's 

parameters and its coefficients. Closed-form equations for these tasks for the Kaiser and 

Saramaki windows can be found in [ I ]  and [8], respectively. 

5.4 Design Example and Comparisons 

The proposed method was used to design 32-channel CMFBs with a stopband attenua- 

tion of - 100 dB. A CMFB satisfying these specifications can be used in the MPEG audio 

coder, and has been used on a number of occasions to compare different filter-bank design 

methods [46], [47], [48]. Designs were obtained using the proposed method with the ultra- 

spherical, Kaiser, and Saramaki windows for different values of the roll-off factor p. Figure 

5.4 shows plots of the amplitude response of the prototype filter, the amplitude response of 

the filter bank, and the total aliasing error of the filter bank designed using the proposed 



5.4 Design Example and Comparisons 94 

Figure 5.2. Values of the objective function over the range 0 5 D 5 1 for various values 

of the roll-oflfactor p for the ultraspherical window. 

method with an ultraspherical window and p = 1.05. Table 5.3 lists the maximum recon- 

struction errors and the prototype filter length associated with a small set of the designed 

filter banks. Figure 5.5 shows plots of the maximum reconstruction errors of the resulting 

MPEG-compliant filter banks that were designed over the range 0.5 5 p 5 1.5. The plots 

show that when the channel overlap increases (larger values of p) the aliasing errors in- 

crease significantly while the amplitude distortion of the filter bank remains relatively con- 

stant over the entire range of p. The average percentage decrease in error provided by the 

Kaiser window over the Saramaki and ultraspherical windows was, respectively, 11.69% 

and 12.17% for max (e,(w) 1, 1.34% and 26.5 1% for max (e,(w) I, and 2.1 1 %  and 34.65% 

for max (et,(w) I. On the average, the Kaiser window provides the smallest reconstruction 

errors although cases exist where the use of the Saramaki or ultraspherical windows yields 

smaller reconstruction errors. For instance, when p = 1.2 Table 5.3 reveals that the use of 
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Figure 5.3. Values of D that minimize the objective function over the range 0.5 5 p 5 1.5 

for various stopband attenuations for the ultraspherical window. 

the Saramaki window yields a reduction in all of the maximum errors relative to the designs 

obtained using the Kaiser window. 

In terms of filter length, the filter banks designed using the ultraspherical window pro- 

vided an average decrease in the prototype filter length of 3.07% and 2.86% relative to 

the Kaiser and Saramaki windows, respectively. This is a reflection of the results reported 

in Chapter 4 which indicate that the ultraspherical window can yield lower-order filters 

than those designed using the Kaiser or Saramaki windows over a wide range of lowpass 

filter specifications. The computation time required to design the prototype filter using 

the proposed method and the methods of 1471 and 1481 were 0.0470,3.2868, and 7.6658s, 

respectively. In effect, the proposed method reduced the amount of computation time to 

1.43% of that required by the method in 1471 or to 0.61% of that required by the method 

in [48]. The computation time of the proposed method included costs associated with the 
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Table 5.3. Reconstrui 

Design Method 

Method in [46] 

Method in [47] 

Method in [48] 

Kaiser p = 1.00 

Kaiser p = 1.05 

Kaiser p = 1.10 

Kaiser p = 1.20 

Saramaki p = 1 .OO 

Saramaki p = 1.05 

Saramaki p = 1.10 

Saramaki p = 1.20 

ultraspherical p = 1.00 

ultraspherical p = 1 .O5 

ultraspherical p = 1.10 

ultraspherical p = 1.20 

ion Error Comparison for the Design Example 

N max (e,(w)( max (e,(w)J max J e t , ( ~ ) l  

spline interpolation algorithm. The prototype filter designed using the method in [46] had 

reduced maximum amplitude error, increased maximum aliasing error, and increased max- 

imum total aliasing error relative to that produced by the other methods (see Table 5.3). 

This method yields a prototype filter of reduced length, as may be expected, but a huge 

amount of computation is required for the design due to the repeated use of the Remez 

exchange algorithm, which makes this method impractical for applications where designs 

must be carried out in real or quasi-real time. In addition, it has been reported that sig- 

nificant human intervention in the optimization process is required because the algorithm 

frequently fails to converge to the global minimum [46]. 

The proposed method was used to design 16-channel CMFBs with p = 1.00 for stop- 
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Normalized Frequency 

(c> 

Figure 5.4. Performance of the CMFB designed using the proposed method with the de- 

sign parameters M = 32, A, = -100 dB, and p = 1.05 for the ultraspherical window. 

(a) Amplitude response of the prototype filter in dB. (b)  lTo(eiw) I over [0, T I M ] .  (c)  Total 

aliasing error eta (a).  
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Figure 5.5. CMFB designed using the proposed method with A, = 100 dB and M = 32 

for the ultraspherical (dashed line), Kaiser (solid line), and Saramaki (dotted line) win- 

dows. ( a )  Maximum amplitude distortion. (b)  Maximum aliasing distortion. (c)  Maximum 

total aliasing distortion. 
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band attenuations varying over the range [-150, -501. The roll-off factor was chosen to 

be 1 .OO so that only channels which are immediately adjacent to one another overlap, i.e., 

for a given channel two channels (one on either side) will overlap (see Fig. 5.1). CMFBs 

satisfying the same specifications were then designed using the methods of [47] and [48]. 

Note that the prototype filter length required by the proposed method for a given set of 

design specifications was found to be the same as that required by the methods of [47] and 

[48]. This is due to the fact that the prototype filter length is equal to the length of the win- 

dow function, which is calculated from an empirical equation that is based on the stopband 

attenuation and channel overlap of the system. Figure 5.6 shows plots of the percentage 

difference in the maximum reconstruction errors for the CMFBs designed with the pro- 

posed method relative to those of the designs obtained with the other two methods, which 

are given by 

When compared with the methods of [47] and [48], the proposed method was found to 

provide an average increase of 9.53% and 1.52% in the maximum amplitude error, an 

average increase of 0.01 1 % and decrease of 0.007% in the maximum aliasing error, and an 

average increase of 0.062% and 0.035% in the maximum total aliasing error, respectively. 

However, the proposed method was found to reduce computational costs associated with 

the design of the prototype filter to 1.36% of that required by the method in [47] or to 

0.68% of that required by the method in [48] on the average. 

Conclusions 

An efficient closed-form method for the design of M-channel cosine-modulated filter banks 

using the window method so as to achieve prescribed stopband attenuation in the subbands 
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Figure 5.6. Percentage diflerence in the maximum reconstruction errors for the proposed 

method relative to that produced by the methods of (471 (dashed line) and [48] (solid line). 
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and channel overlap was proposed. The method is based on empirical formulas that give 

the required filter length and window parameters that would satisfy the prescribed specifi- 

cations. Experimental results have shown that, on the average, use of the Kaiser window 

yields filter banks with the smallest reconstruction error achieving an average percentage 

decrease in error over the Saramaki and ultraspherical windows of, respectively, 11.69% 

and 12.17% for the maximum amplitude error in the filter bank, I .34% and 26.5 1 % for 

the maximum aliasing error in the filter bank, and 2.1 1 % and 34.65% for the maximum 

total aliasing error in the filter bank. On the other hand, use of the ultraspherical window 

yields filter banks with the least amount of design computational complexity (due to the 

efficient formulation proposed in Chapter 2) and prototype filters with the shortest length 

(as described in Chapter 4). When compared with the window-based methods of [47] and 

[48], the proposed method, on the average, increased the average maximum amplitude er- 

ror by 9.53% and 1.52%, respectively, provided almost no change in the average aliasing 

error and the average total aliasing error, and produced prototype filters of the same length. 

However, the computation required is usually a small fraction, less than 2% on the average, 

of that required by the other methods making it very suitable for applications where the 

design must be carried out in real or quasi-real time. 



Chapter 6 

Application of Windows to the STDFT 

Method for Gene Prediction 

6.1 Introduction 

The gene-prediction problem involves identifying and locating genes in an organism's 

genome. Over the past decade deoxyribonucleic acid (DNA) genomes for many organisms 

have been sequenced and effective methods for gene prediction are necessary to determine 

their functional capabilities. DNA sequences comprise long chains of nucleotides. There 

are four different kinds of nucleotides which can be represented using the four-character 

alphabet A, T, C, and G (adenine, thymine, cytosine, and guanine, respectively). DNA se- 

quences can be separated into two regions known as genes and intergenic spaces. Genes are 

further separated into two regions known as exons (coding regions) and introns (noncoding 

regions). 

The gene-prediction problem encompasses the problem of identifying coding regions, 

which direct the formation of proteins in eucaryotes (cells with a nucleus). A diverse 

range of gene-prediction methods exist that employ pattern recognition techniques, hidden 

Markov models, neural networks, and other techniques. A good survey of these methods 

which includes a discussion of their attributes can be found in [50]. A recent method for 

gene prediction uses DSP-based techniques to locate the well known period-three (P-3)  

property in DNA sequences [5 11-[53]. The P-3 property originates from the codon's triplet 



6.2 Application of STDFT Method for Gene Prediction 103 

structure and is mostly present in coding regions but is absent elsewhere. 

Gene prediction on the basis of the P-3 property can be carried out by using the discrete 

Fourier transform (DFT) in conjunction with the window technique [ I ]  in a method that is 

often referred to as the short-time DFT (STDFT) method. In recent work on gene prediction 

based on the P-3 property, the window used with the STDFT method has largely been the 

rectangular window [51], [52], [53], [54]. Unfortunately the amplitude spectrum of the 

rectangular window provides low side-lobe attenuation relative to the main lobe, which 

makes this window a poor choice for suppressing background noise that is common in DNA 

sequences. Use of the rectangular window can cause noncoding regions to be inadvertently 

identified as coding regions. This problem can be remedied to some degree by employing 

windows with increased side-lobe attenuation. 

In this chapter, the application of the ultraspherical window along with the STDFT 

method for gene identification based on the well known period-three property is explored. 

The chapter is structured as follows. Section 6.2 describes the STDFT method as applied 

to gene prediction. Section 6.3 explores the application of windows and provides examples 

and comparisons. Section 6.4 provides concluding remarks. 

Application of STDFT Method for Gene Prediction 

The STDFT method for gene prediction comprises three steps. First, the DNA character 

sequence is converted to a numeric sequence. Second, a measure for the P-3 property is 

calculated for a portion of the DNA sequence, i.e., for a window of nucleotides. Third, the 

window is successively shifted along the DNA sequence and the measure is re-calculated 

for each window of nucleotides. 

The DNA character sequence is converted to a numeric sequence by creating a binary 

indicator sequence u,(n) for each of the four nucleotides a = { A ,  T ,  C, G )  [51]. These 

sequences are constructed by using a 1 or 0 to indicate the presence or absence, respectively, 

of a given nucleotide (see Table 6.1). This mapping preserves correlations between coding 
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regions and does not introduce false correlations between character symbols. 

One measure for the P-3 property is the total energy in the Fourier spectrum of a DNA 

sequence, which is the sum of the individual power spectra of each binary indicator se- 

quence [5 ll, i.e., 

Table 6.1. Binary Indicator Sequences 

where U,(k) is the windowed-DFT of u,(n) over N samples given by 

x ( n )  

N-1 

Ua ( k )  = x w ( n ) u ,  ( n ) e - ~ ~ " * ~ / ~  f o r O < k < N - 1  (6.2) 
n=O 

G G A T A T C A C  

where w ( n )  is a right-sided window of length N. The P-3 property can be identified by 

plotting the windowed-DFT. If the P-3 property is present, the DFT coefficient U,(N/3) 

is significantly larger than the surrounding DFT coefficients. Consequently, F I w ( N / 3 )  is 

large in a coding region. Spectral estimates that avoid 'picket fence' effects are obtained 

when N is a multiple of three. 

A second measure for the P-3 property is given by [52] 

where 
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Parameters a,  t ,  c, and g were calculated to maximize the discrimination between cod- 

ing regions in the organism Xcerevisiae and random DNA sequences. Like Fl,(N/3), 

F2ut (N/3) is large in a coding region. 

To achieve base-domain resolution, the STDFT representation of Fl, (N/3) and F2, (N/3) 

was used, which is obtained by calculating one of the two measures for a data window of 

N samples, sliding the window by one or more samples, and recalculating the measure. 

Any one of several windows can be used in the STDFT method [ l ]  but recent work on 

the application of the method for gene prediction has focused on the use of the rectangu- 

lar window. Window lengths can range from a few hundred to a few thousand; however 

longer windows can compromise the base-domain resolution while shorter windows tend 

to increase the level of noise. A window length of 351 has been found to provide good 

experimental results when using the rectangular window [5 I]. 

Below we explore the application of some of the more powerful windows in the above 

method in order to achieve increased accuracy in gene prediction. The windows considered 

are the ultraspherical, Kaiser, Dolph-Chebyshev, and Saramaki windows. 

6.3 Examples and Comparisons 

The STDFT method was used to analyze coding regions in gene F56F11.4 in the Celegans 

chromosome 111 over the bases 702 1 to 15 120. This 8 100-length DNA sequence, which 

was obtained using the Nucleotide Accession Number 'AF099922' at the Genbank website, 

contains five known coding regions at the base locations listed in Table 6.2 relative to 7021. 

Figures 6.la and 6. lb  show plots of F1,(N/3) for the rectangular window and Kaiser 

window with a! = 3.0, designated as FlR(N/3) and FlK(N/3); and Figures 6 . 1 ~  and 6.Id 

show plots of F2,(N/3) for the rectangular window and Kaiser window with a = 3.0, 

designated as FzR(N/3) and FZK(N/3),  respectively. All windows were of length 35 1 and 

the DNA sequence was zero padded on either end to ensure that the STDFT representation 

corresponds to the center of the window. Figure 6.2 illustrates the normalized amplitude 
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Table 6.2. The Five Coding Regions in Gene F56F11.4 

Enon / Relative Location Length 

spectrum for the rectangular and Kaiser windows. The Kaiser window provides 23.81 dB 

of relative side-lobe attenuation with a main-lobe width of 0.0496 radls. On the other hand, 

the rectangular window provides 13.26 dB of relative side-lobe attenuation with a main- 

lobe width of 0.0355 radls. 

FlR(N/3)  shows four discernible peaks for coding regions 2, 3, 4, and 5 but the first 

coding region is unrecognizable. Measure FIK ( N / 3 )  shows five discernible peaks for all 

coding regions but noise located around the first coding region is still large. Conversely, 

measures FzR(N/3) and FzK(N/3) show five discernible peaks which identify all of the 

coding regions. To evaluate the accuracy of the measures in predicting the coding regions, 

we have employed the signal-to-noise (SNR) performance metric 

SNR = 
CnoE [coding regions] 

Enl E[nonioding regions] ' (~1)  

where n is the nucleotide location at the center of the data window and Y (n) is the value of 

a P-3 property measure, e.g., FlR(N/3), located at nucleotide n on the DNA sequence. This 

metric takes into account base-domain resolution and has been shown to be an important 

factor in the detectability of coding regions [54]. Table 6.3 lists the SNR values achieved for 

each measure. For both gene-prediction measures, the Kaiser-windowed versions increased 

the SNR relative to their rectangular-windowed counterparts. 
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Figure 6.1. STDFT representations for various gene-prediction measures vs. their base 

location n for the gene F56F11.4 in the Celegans chromosome III. 
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0 0.1 0.2 0.3 0.4 

Frequency (radls) 

Figure 6.2. Normalized amplitude spectrum for a Kaiser window with a = 3.0 (solid line) 

and a rectangular window (dashed line) of length N = 351. 

Table 6.3. SNR Achieved for Gene-Prediction Measures 
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Table 6.4. Optimization Results for Various Windows 

Window / SNR N 0 

6.3.1 Optimizing the Window Parameters for the Gene F56F11.4 

Kaiser 

Dolph-Chebyshev 

Saramaki 

ultraspherical 

The selection of a particular window and its adjustable parameters influence the method's 

capability in identifying coding regions. Figure 6.3 shows plots of the SNR obtained for 

the F21((N/3) STDFT representation vs. the Kaiser window's adjustable parameter a for 

various window lengths. To facilitate the selection of window parameters, solutions were 

obtained for the optimization problem 

1.8957 405 cx = 3.6226 

1.8906 5 13 r = 56.472 1 

1.8957 405 /3 = 1.5304 

1.8959 435 p = 1.5733 

p = 1.6460 

max SNR 
N,O 

where N is the window length (restricted to be a multiple of 3) and O represents the set of 

other available window parameters. The optimization algorithm has been implemented 

using the MATLAB function fmincon. Table 6.4 shows optimization results for the 

Kaiser, Dolph-Chebyshev, Saramaki, and ultraspherical windows. The ultraspherical win- 

dow achieved an SNR value slightly higher than the Kaiser and Saramaki windows while 

the Dolph-Chebyshev window provided the lowest SNR. Figure 6.4 illustrates the STDFT 

representation obtained when using the ultraspherical window with its optimal values. As 

can be seen, the noise level between coding regions is significantly reduced relative to those 

in Fig. 6.1 a and b. 
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Figure 6.3. SNR achieved for the FZK(N/3 )  STDFT representation vs. the adjustable 

parameter a for window lengths N = 201 (solid line), 351 (dotted line), 501 (dashed- 

dotted line), and 651 (dashed line). 

6.4 Conclusions 

The application of the ultraspherical window as well as other windows along with the 

STDFT method for gene identification based on the well known period-three property was 

explored. A window was employed to suppress spectral noise originating from noncoding 

regions in the DNA sequence. A method for tailoring the independent parameters of the 

ultraspherical window for the identification of a particular gene was proposed. When the 

method was applied to gene F56F11.4 of the Celegans organism, the SNR-based measure 

for gene identification was increased by 13.72% relative to that achieved when using the 

rectangular window. Comparisons show that the ultraspherical, Kaiser, and Saramaki win- 

dows yield approximately the same SNR values when their parameters are optimized. The 

Dolph-Chebyshev window yields an SNR value that is 0.28% smaller than that of the other 
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Figure 6.4. F2~(N/3) STDFT representation with N = 435, p = 1.5733, and /3 = 

1.6460. 

windows. 



Chapter 7 

Conclusions 

7.1 Introduction 

The major objective of this thesis has been to utilize the flexible nature of the ultraspherical 

window function to improve window-based DSP applications. Initial efforts in achieving 

this goal focused on furthering aspects of the window function itself, i.e., determining 

its spectral properties and providing fast algorithms for calculating its coefficients. Once 

the fundamentals of the window function had been investigated, a number of window- 

based DSP applications were explored which included beamforming, image processing, 

nonrecursive filter design, filter bank design, and genomic signal processing. 

In this chapter, the contributions of the thesis are summarized and suggestions for fur- 

ther research are presented. 

7.2 Thesis Results 

In Chapter 2, two methods for evaluating the coefficients of the ultraspherical window 

were presented. The two methods yield the same window values for the same independent 

parameters p, x ~ ,  and N .  Economies in computation are achieved through an efficient 

formulation for the window coefficients which entails a computational complexity of O ( N )  

as compared with 0 ( N 2 )  for Streit's formulation. The amount of computation required by 

the new formulation is on the average 4.49% that required by Streit's formulation and 
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9.27% that required for the evaluation of the Kaiser window coefficients. In addition, a 

method for setting the null-to-null width of the ultraspherical window to 4@77-/N, i.e., p 

times that of the rectangular window, was introduced. The chapter has also shown that the 

Dolph-Chebyshev and Saramaki windows are special cases of the ultraspherical window 

and can be obtained by setting ,LL to 0 and 1, respectively. 

In Chapter 3, a method for selecting the three independent parameters of the ultras- 

pherical window so as to achieve prescribed spectral characteristics was proposed. The 

method comprises a collection of techniques that can be used to achieve a specified ripple 

ratio and either a main-lobe width or null-to-null width along with a user-defined side-lobe 

pattern. The side-lobe pattern in other known two-parameter windows such as the Kaiser, 

Saramaki, and Dolph-Chebyshev windows cannot be controlled. Experimental results have 

shown that the desired characteristics can be achieved with a high degree of precision. A 

difference in the performance of the ultraspherical and Kaiser windows has been identi- 

fied, which depends critically on the required specifications. A rule for selecting either 

the ultraspherical or Kaiser window based on the performance difference was proposed. 

In addition, an expression was provided that can be used to judge how much ripple ratio 

is sacrificed to attain a given side-lobe pattern when compared to the Dolph-Chebyshev 

pattern. This is useful for antenna array designers who may need to trade-off between side- 

lobe pattern and ripple ratio for the application at hand. The proposed method can also 

be used to increase the contrast ratio in imaging systems that construct images by using 

two-dimensional windowed inverse DFTs on spatial frequency-domain data. 

In Chapter 4, an efficient closed-form method for the design of nonrecursive digital fil- 

ters using the ultraspherical window was proposed. Economies in computation are achieved 

in two ways. First, by using the efficient formulation of the window coefficients presented 

in Chapter 2, the amount of computation required is reduced to a small fraction of that re- 

quired by standard methods. Second, the filter length and the independent window param- 

eters that would be required so as to achieve prescribed specifications in lowpass, highpass, 

bandpass, and bandstop filters as well as in digital differentiators and Hilbert transformers 
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are efficiently determined through empirical formulas. The ultraspherical window yields 

lower-order filters relative to designs obtained using other windows yielding on the aver- 

age a reduction in the filter order of 3.07% relative to that in the Kaiser window, 2.86% 

relative to that in the Saramaki window, and 5.30% relative to that in the Dolph-Chebyshev 

window. Alternatively, for a fixed filter length, the ultraspherical window increases the 

stopband attenuation relative to that in the other windows achieving on the average an in- 

crease of 2.61 dB relative to the Kaiser window, 2.42 dB relative to the Saramaki window, 

and 4.49 dB relative to the Dolph-Chebyshev window. On the other hand, the weighted- 

Chebyshev method increases the stopband attenuation relative to that of the ultraspherical 

window by about 2.76 dB on the average but the amount of computation required to design 

filters is far greater than that required by the proposed method. 

In Chapter 5, an efficient closed-form method for the design of M-channel CMFBs 

using the ultraspherical window so as to achieve prescribed stopband attenuation in the 

subbands and channel overlap was described. The design of the prototype filter is based on 

the proposed method for the design of lowpass filters described in Chapter 4. Experimen- 

tal results have shown that, on the average, use of the Kaiser window yields filter banks 

with the smallest reconstruction error achieving an average percentage decrease in error 

over the Saramaki and ultraspherical windows of, respectively, 11.69% and 12.17% for the 

maximum amplitude error in the filter bank, 1.34% and 26.5 1 % for the maximum aliasing 

error in the filter bank, and 2.1 1% and 34.65% for the maximum total aliasing error in the 

filter bank. On the other hand, CMFBs designed using the ultraspherical window require 

the least amount of computation and yield prototype filters with the shortest length when 

compared to designs obtained using other windows. When compared to the window-based 

methods of [47] and [48], the proposed method increased the average maximum amplitude 

error by 9.53% and 1.52%, respectively, provided almost no change in the average aliasing 

error and the average total aliasing error, and produced prototype filters of the same length. 

However, the computational effort required by the proposed design method is a small frac- 

tion, less than 2%, of that required by the other two methods making it very suitable for 
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applications where the design must be carried out in real or quasi-real time. When com- 

pared to a filter-bank design method that employs the weighted-Chebyshev method for the 

prototype filter design [46], the proposed method requires significantly less computation; 

the method in [46] requires a huge amount of computation due to the repeated use of the 

Remez exchange algorithm. 

In Chapter 6, the application of the ultraspherical window as well as other known win- 

dows along with the short-time discrete Fourier transform method for gene identification 

based on the well known period-three property was explored. The ultraspherical window 

is employed to suppress spectral noise originating from noncoding regions in the DNA 

sequence. A method for tailoring the independent parameters of the ultraspherical win- 

dow for the identification of a particular gene was proposed. When the method was ap- 

plied to gene F56F11.4 of the Celegans organism, a signal-to-noise (SNR)-based measure 

for gene identification was increased by 13.72% relative to that achieved when using the 

rectangular window. Comparisons show that the ultraspherical, Kaiser, and Saramaki win- 

dows yield approximately the same SNR values when their parameters are optimized. The 

Dolph-Chebyshev window yields an SNR value that is 0.28% smaller than that of the other 

windows. 

7.3 Future Research 

The temporal and spectral characteristics of a window largely determine what applications 

the window is best suited for. For example, through the alteration of the side-lobe pattern of 

the ultraspherical window the contrast ratio of inverse-DFT-based imaging systems was im- 

proved (Chapter 3) and nonrecursive filter designs were obtained with increased stopband 

attenuation (Chapter 4). One possibility for future window designs is to use multiobjective 

optimization algorithms and the concept of Pareto optimality [27] to yield designs so as to 

simultaneously achieve a variety of temporal and spectral characteristics in the best pos- 

sible fashion for a particular application, e.g., figures of merit for windows when used in 
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conjunction with the DFT include the equivalent noise bandwidth, processing gain, overlap 

correlation, and scalloping loss [5]. Pareto-optimal multiobjective optimization methods 

come in many flavors including the &-constraint method [55], goal attainment method [56], 

and a variety of evolutionary algorithms [57] just to name a few. Use of these methods for 

window designs for particular applications would be very interesting and most likely quite 

fruitful. 

Recently a pattern-synthesis method for introducing multiple steerable nulls in an other- 

wise omnidirectional pattern has been proposed for circular dipole antenna arrays [%], [59] 

and for cylindrical patch antenna arrays [60]. Synthesis patterns of this type can suppress 

noise caused by stationary or mobile jammers and still maintain an otherwise omnidirec- 

tional coverage. The width of the nulls and the gain ripple in the omnidirectional pattern 

are controlled by the use of window functions. The Hamming window has been considered 

for this design. By employing flexible windows (like the ultraspherical window) it is ex- 

pected that improved results can be obtained. Furthermore, patterns that yield prescribed 

null width and gain ripple are possible by using methods similar to those of Chapter 4 for 

the design of nonrecursive filters. 

Transmultiplexers (TMUXs) are used for interfacing between time-division and frequency- 

division multiplex systems [61]. Recently TMUXs have been designed using filter banks 

which can be used in several communication applications including code-division multi- 

ple access, discrete multi-tone, and orthogonal frequency-division multiplexing [62], [63], 

[64]. CMFBs are considered good candidates for coding because of their capability to 

achieve high discrimination (high stopband attenuation) and due to the availability of fast 

algorithms for efficiently implementing the sub-carrier modulators in a parallel processing 

structure. An efficient design method for CMFB-based transmultiplexers would be to use 

the method described in Chapter 5 for the prototype filter design. This method could be 

used to quickly adapt TMUXs based on changing requirements for channel characteristics 

such as frequency-time spreading, inter symbol interference, and inter channel interference. 

Finally, over the past decade DNA genomes for many organisms have been sequenced 
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and effective methods for analyzing their characteristics are required. In Chapter 6 we 

investigated tailoring the ultraspherical window to maximize the detectability of the P-3 

property to identify coding regions. Another well-known property present in DNA se- 

quences is the period-ten-eleven (P-10111) property, which signifies folding in the DNA 

molecule (DNA supercoiling) and can be used to identify the location of a-helix structures 

[65]. As in the methods described in Chapter 6, one could tailor windows to detect the P- 

1011 1 property thereby providing a means for identifying a-helix structures. The detection 

of repeats of arbitrary length and their positional relation to landmarks in DNA sequences 

would also be interesting. 
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