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ABSTRACT

Electrocardiogram (ECG) records the electrical impulses from myocardium, reflects the un-

derlying dynamics of the heart and has been widely exploited to detect and identify car-

diac arrhythmias. This dissertation examines a resource-saving cloud based long-term ECG

(CLT-ECG) monitoring system which consists of an ECG raw data acquisition system, a

mobile device and a serve. Three issues that are critically pertaining to the effectiveness and

efficiency of the monitoring system are studied: the detection of life-threatening arrhyth-

mias, the discrimination of normal and abnormal heartbeats to facilitate the resource-saving

operation and the multi-class heartbeat classification algorithm for non-life-threatening ar-

rhythmias.

The detection algorithm for life-threatening ventricular arrhythmias, which is critical

to saving patients’ lives, is investigated by exploiting personalized features. Two new per-

sonalized features, namely, aveCC and medianCC, are extracted based on the correlation

coefficients between a patient-specific regular QRS-complex template and his/her real-time

ECG data, characterizing subtle differences in the QRS complexes among different people. A

small set of the most effective features is selected for efficient performance and real-time op-

eration using Support Vector Machines (SVMs). The effectiveness of the proposed algorithm

is validated in enhancing the performance under both the record-based and database-based

data divisions. The classification algorithm achieves results outperforming the existing clas-

sification performances using top-two or top-three features.

A novel patient-specific arrhythmia detection algorithm, which discriminates the normal

and abnormal heartbeats, is proposed using One-Class SVMs. Conventionally, CLT-ECG

systems are used to solve problems such as the portable problem and the difficulty of cap-

turing the intermittent arrhythmias. However, CLT-ECG systems are subject to several

practical limitations: battery power restriction, network congestion and heavily redundant

ECG data. To overcome these problems, a resource-saving CLT-ECG system is studied, in
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which a novel arrhythmia detection algorithm closely related to the resource-saving rate is

proposed and examined in detail. The proposed arrhythmia detection algorithm explores

two types of variations: waveform change indicator (WCI), which reflects a change within

one heartbeat; modified RR interval ratio (modRRIR), which characterizes the successive

heartbeat interval variation. The overall classification result is obtained from combining the

results separately adopting WCI and modRRIR. The proposed algorithm is validated using

the public ECG database with a result outperforming others in the literature, as well as

using the data collected from the ECG platform Heartcarer built in our research group.

Considering the multi-class classification in the cloud server, a patient-specific single-lead

ECG heartbeat classification strategy is proposed to discriminate ventricular ectopic beats

(VEBs) and Supraventricular Ectopic Beats (SVEBs). Two types of features are extracted:

Intra-beat features characterize the distortion of the waveform within one heartbeat, while

inter-beat features reflect the variation between successive heartbeats. A novel fusion strat-

egy consisting of a global classifier and a local classifier is presented. The local classifier

is obtained using the high-confidence heartbeats extracted from about 5-minute data of a

specific patient, while the global classifier is trained by the public training data. The ad-

vantage of the developed strategy is that fully automatic classification is realized without

the intervention of physicians. Finally, simulation results show that comparable or even bet-

ter classification performance is achieved, which validates the effectiveness of the proposed

strategy.
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Chapter 1

Introduction

Hundreds of thousands of people worldwide are impacted by a variety of heart diseases, which

can lead to various health issues or even cardiac deaths. Traditional hospital health examina-

tion and long-term personal care provided by doctors and nurses can not handle the growing

number of patients and the resulting astronomical healthcare cost. A cloud based long-term

electrocardiogram (CLT-ECG) system using a smartphone is emerging as an effective tool

for long-term monitoring and urgent cardiac event alarming. With the availability of a large

amount of data collected by an ambulatory electrocardiogram (ECG), signal processing of

the ECG data for automatic identification of potential problems is becoming increasingly

important. Thus, research work on CLT-ECG signal processing techniques draws many

attentions from both academic researchers and cardiologists.

In general, ECG signal processing techniques are developed in two main directions, system

design (for data acquisition, transmission, storage and display), and automatic ECG-based

heart disease classification and diagnosis. A simple CLT-ECG system is shown in Fig. 1.1.

The data stream originating from the ECG sensor board, is amplified, filtered, digitalized

and finally transmitted to the cloud server/hospital database through the mobile device

such as smartphones. The system design is determined by objectives of the automatic ECG
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classification and diagnosis.

Smartphone 

Could Server 

BLE 

WiFi/Cellular 

Internet 

Other Phones 

Computer 

ECG Sensor Board 

BLEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 1.1: A CLT-ECG system overview.

Automatic ECG classification usually includes filtering, QRS detection, feature extrac-

tion and selection, and heartbeat/rhythm classification, as shown in Fig. 1.2. In the filtering

process, the motion artifact problem is still not well solved, especially in wearable CLT-ECG

systems, while other noise removal mechanisms achieve good performance. QRS detection

is the first step to analyze an ECG signal. The commonly used methods for QRS detection

are well developed, such as the Pan and Tompkins (P & T) algorithm and wavelet transform

based methods. Feature extraction and selection are mainly for ECG classification such as

diagnosing of certain heart diseases. Extracted features are from time domain, frequency

domain or other domains/spaces. Feature selection techniques rank extracted features and

choose the features with desired performance, which facilitates the following abnormal heart-

beat detection or arrhythmia detection.
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ECG signal
Filtering & QRS

detection

Feature extraction

& selection
Classification

ECG rhythm/

heartbeat types

Figure 1.2: Diagram for automatic ECG classification.

How to assign the classification tasks to different parts of the whole CLT-ECG system,

in order to make the system practical and resource-effective? And how to realize the tasks

and improve the automatic classification performances? Based on what is mentioned above,

the dissertation focuses on the final result when considering the CLT-ECG system design

as well as the distributed implementation of the automatic ECG classification and diagno-

sis algorithm, to achieve the overall improvement on both system design and classification

algorithms.

This chapter is organized as follows. The background of ECG, namely, the interpreta-

tion of cardiac electrophysiology, the fundamentals of ECG lead signals, ECG arrhythmias

closely related with ECG waveforms, and a general CLT-ECG system scheme, is introduced

in Section 1.1. Then three research issues, namely, life-threatening arrhythmia detection,

anomaly-trigged CLT-ECG data transmission and non-life-threatening arrhythmia detec-

tion, are stated separately under the proposed CLT-ECG scheme in Section 1.2. Finally, the

contributions and the organization of the thesis are presented in Section 1.3.

1.1 Background

ECG signal serves as the basis for all the subsequent research objectives, such as feature ex-

traction and classification. Thus, the background of ECG, namely, cardiac electrophysiology,

ECG lead signals, and ECG arrhythmias, is presented as follows.
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1.1.1 Cardiac Electrophysiology

The cardiac electrophysiology can be interpreted in two different levels. At the cellular level,

the ECG signal stems from an electrochemical activity. Under the resting condition, there

is a negative potential inside the cell and a positive potential outside the cell, called resting

potentials. Stimulated by a current, potentials of the inside and the outside of the cell are

both changed towards the opposite potentials, named action potentials. In one heartbeat,

the original action potential is generated by a group of autorhythmic cells inside the sinoatrial

(SA) node in the right atrium, propagated to the left atrium, and finally conducted to the

ventricles through the atrioventricular (AV) node between the right ventricle and the right

atrium (Fig. 1.3). Depolarization of heart cells happens along with the conduction process

and repolarization of cells occurs when recovering from an action status to a resting status.

Figure 1.3: Specialized neural-like conductive tissues and their approximate intrinsic rates [1].

At the body surface level, the morphology of the ECG signal is related to the depolar-

ization and repolarization processes, as well as the contraction and recovery of the atria and

the ventricles. One ECG morphology record of Lead II in Fig. 1.4 is taken as an exam-

ple of normal sinus rhythms (NSRs). P wave describes the depolarization process from the

right atrium to the left atrium and from the SA node to the AV node, corresponding to the
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contraction of the atria; QRS-complex represents the depolarization of ventricles with the

ventricular contraction and hidden atrial repolarization; T wave reflects the repolarization

of the ventricles together with the ventricular recovery; P-R interval and S-T interval are

the transition durations; P-R interval is the atrial transition duration; Q-T interval is the

ventricular transition duration of the depolarization and repolarization processes; U wave is

seldom seen and used as a reference in the clinical diagnosis.

Figure 1.4: ECG waveform of a single heartbeat [2].

1.1.2 Electrocardiogram Leads and Electrode Placement

In the previous section, the generation and conduction of the ECG signal are illustrated,

as well as the ECG waveform during one heartbeat from Lead II. In the following, the

measurement of the ECG signal and the interpretation of different lead signals are generally

introduced.

One typical traditional ECG system is the standard 12-lead ECG system, mainly used

in hospitals for a short-term inspection. As shown in Fig. 1.5, 10 body surface potentials

collected by 10 electrodes placed at the fixed points, i.e., 4 limb voltages (RA, LA, RL, and

LL) and 6 precordial voltages (V1,V2,V3,V4,V5,and V6), are collected at the same time.



6

12-lead ECG signals obtained from 10 electrode potentials are grouped into three sets as

follows.

• 3 limb leads: Lead I, Lead II and Lead III, respectively calculated by LA-RA, LL-RA

and LL-LA, i.e., the potential difference from the left arm to the the right arm, from

the left leg to the the right arm and from the left leg to the left arm.

• 3 augmented limb leads: aVR, aVL, aVF, respectively calculated by 3
2
(RA-Vw), 3

2
(LA-

Vw), and 3
2
(LL-Vw), where Vw = 1

3
(RA+LA+LL).

• 6 precordial leads: V1,V2,V3,V4,V5 and V6.

Figure 1.5: Electrode placement for the standard 12-lead ECG [3].

In CLT-ECG monitoring systems, less electrodes will be used for portable and real-time

usage. The ECG electrode placement will be arranged according to the limb leads as the
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limb leads usually have larger signal power. For some patients are diagnosed to have certain

specific heart disease symptoms, the electrode placement will be changed accordingly.

1.1.3 ECG Arrhythmias

ECG arrhythmias are caused by the heart disorder, different from NSRs. Generally, NSRs

result from the normal pacemaker and the subsequent successful electrical impulse propa-

gation downward along the conductive tissues as shown in Fig. 1.3. The pacemaker is the

electrical excitation signal originating from the SA node. An arrhythmia happens while there

are problems in the pacemaker and/or the impulse conduction. According to the patholo-

gies, arrhythmias can be divided into 6 types. Each type has a few typical morphologic

features and consists of a few heart diseases which are described in [4] and are summarized

in Tables 1.1 and 1.2.

These arrhythmias mentioned above can be grouped into two sets according to the emer-

gency level in practice, namely, life-threatening arrhythmias and non-life-threatening ar-

rhythmias. Life-threatening arrhythmias are also known as shockable rhythms, such as VF.

These arrhythmias may cause sudden cardiac arrest or death if no immediate therapy is

provided within a few minutes, especially in an out-of-hospital situation. Henceforth, con-

tinuous monitoring and real-time detection for these critical heart arrhythmias are necessary,

which will help achieve a high probability of survival for patients. On the other hand, the

detection of the non-life-threatening arrhythmia detection can save a lot of workload and

provide diagnosis reference for cardiologists and experts before deterioration.

1.1.4 ECG Systems

The traditional standard 12-lead wired ECG system mentioned in Subsection 1.1.2, has 10

electrodes connected to the surface of patients’ body using wires and the 12 lead signals are

obtained by differential operation. Such a relatively complex system with so many leads is



8

Table 1.1: Arrhythmia information I.

Rhythm Type Pathologies Morphlogical Features and Disease

NSRs The pacemaker is in
sinoatrial node and
works well

Normal sinus P-wave, QRS-complex and T-
wave morphologies

Sinus Node Ar-
rhythmias

The pacemaker is in
sinoatrial node but
works abnormally

Usually normal sinus P-wave morphology as
the P wave is generated from the S-A node
as usual
• Sinus Arrhythmia
• Sinus Bradycardia
• Sinus Arrest
• Sino-Atrial Exit Block

Atrial Arrhyth-
mias

The pacemaker is in
the atria

Different P-wave morphology but normal
QRS-complex and T-wave morphologies, as
the P-wave is generated outside the S-A node
but the other two waves originate from ven-
tricles excited by a normal A-V node
• Wandering Atrial Pacemaker (WAP)
• Premature Atrial Contraction (PAV)
• Atrial Tachycardia (Ectopic and Multi-

focal)
• Atrial Flutter
• Atrial Fibrillation

Junctional
Arrhythmias

The pacemaker is in
the A-V junction.

Normal QRS-complex and T-wave morpholo-
gies but abnormal P-wave morphology, as
the pacemaker in the A-V junction triggers
the depolarization of ventricles according to
the normal pathway but the depolarization
of atria may be conducted along the oppo-
site direction of the normal P wave, from the
A-V node to atria
• Premature Junctional Contractions

(PJC)
• Junctional Escape Rhythm
• Non-Paroxysmal Junctional Tachycar-

dia
• Paroxysmal Supraventricular Tachycar-

dia (PSVT)



9

Table 1.2: Arrhythmia information II.

Rhythm Type Pathologies Morphlogical Features and Disease

Ventricular Ar-
rhythmias

The pacemaker is in
the bundle branches,
Purkinje network,
or ventricular my-
ocardium

Wider bizarre QRS-complex as the impulse is
conducted along abnormal pathway and goes
through non-specialized myocardium with a
slower speed and an irregular direction
• Premature Ventricular Contractions

(PVC)
• Ventricular Tachycardia (VT)
• Ventricular Fibrillation (VF)
• Ventricular Escape Rhythm (Idioven-

tricular Rhythm)
• Accelerated Idioventricular Rhythm
• Ventricular Asystole

Atrioventricular
Blocks

The impulse is blocked
in the A-V junction

A prolonged P-R interval and even no QRS-
complex, as the propagation of the impulse
is delayed or totally prevented along the con-
duction pathway to the ventricles
• First Degree AV Block
• Second Degree Type I AV Block
• Type II AV Block
• Second Degree AV Block
• Third Degree AV Block (Complete AV

Block)
• Pacemaker Rhythm (Implant)

Bundle Branch
and Fascicular

The impulse is
blocked in the bundle
of branches and sub-
branches (fascicles)

Wider abnormal QRS-complex, as a block
of the impulse appears in the buddle of his,
one of the bundle branches, or only one sub-
branch such as one fascicle of the left branch
• Right Bundle Branch Block (RBBB)
• Left Bundle Branch Block
• Left Anterior Fascicular Block (Left An-

terior hemiblock)
• Left Posterior Fascicular Block (Left

Posterior Hemiblock)
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mainly used in hospitals for a meticulous inspection and examination by physicians.

Alternative to wired multi-lead ECG systems, a relatively simple CLT-ECG system that

is portable to use outside hospitals and suitable for long-term monitoring can provide many

additional values not achievable in today’s hospital ECGs. As shown in Fig. 1.1, this CLT-

ECG has fewer leads, and can be further simplified to just have one lead or up to three

leads. Thus such a tiny equipment is very portable and wearable for convenient long-time

continuous monitoring. Furthermore, the use of smartphones can easily display and store the

ECG curves, and transmit the data to a remote cloud server for storage, access and further

processing. Thus, there is no need for patients to frequently drop by certain hospitals to

check their heart status, as their ECG monitoring data could be automatically uploaded and

handily checked by a family doctor. More importantly, an alert will be sent to an ambulance

or a monitoring station, when life-threatening arrhythmias are automatically detected during

the real-time monitoring process. The most commonly-used lead signal is Lead II, followed

by Lead I and Lead III.

1.2 Research Issues

Current research efforts focus on the design of continuous cardiac monitoring systems and the

performance improvement of ECG arrhythmia detection/classification methods [5–7]. The

widespread use of previously proposed systems and techniques has been restricted by several

factors. Firstly, limited battery power makes continuous data transmission not realizable for

long-term ECG recording [8]. Secondly, WiFi/cellular network congestion and disconnection

incidents may cause ECG systems down and no service can be provided, when these ECG

systems rely on online automatic diagnosis from a remote health center and need all the

ECG data to be transmitted remotely [9]. This potential situation is dangerous when life-

threatening arrhythmias happen. Thirdly, a large number of heartbeats in the ECG stream
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are normal, occupying lots of memories and being redundant for diagnosis, leading to heavy

workload for doctors or physicians to review [5]. According to the limitations of the current

CLT-ECG system, a task-based resource-saving system scheme is proposed. Under this

scheme, three concerned research issues are presented, for realizing fully-automatic ECG

classification and diagnosis.

1.2.1 The Proposed Cloud based Long-Term ECG Monitoring

System

Fig. 1.6 presents the overall data processing structure of the resource-saving CLT-ECG

monitoring system. The cloud based ECG monitoring system is simply composed of three

functional blocks: an ECG sensor board, a mobile device, and the cloud server. The raw

ECG signal is pre-filtered and collected in the ECG sensor part, and then is transmitted to

the mobile where the ECG beats are determined whether or not they should be uploaded

wirelessly to the cloud server, after a life-threatening arrhythmia detection process. In the

cloud server, further analysis is conducted to facilitate the specific diagnosis.

The arrhythmia diagnosis task in this ECG monitoring system is realized by three-

stage distributed processing, namely, online life-threatening arrhythmia detection, anomaly-

trigged ECG data transmission and online arrhythmia classification/diagnosis. These three

stages are described as follows. In the first stage, a fast life-threatening arrhythmia detection

algorithm is realized on the patient’s smartphones or PDAs, and an alarm is sent if a life-

threatening arrhythmia is detected through WiFi or mobile data. In the second stage, the

normal and abnormal classification is conducted to identify the ECG data surrounding the

detected abnormal cardiac heartbeats and the anomaly-trigged transmission to the remote

health center is realized, while a large number of redundant normal ECG heartbeats will

be discarded. Finally, a high accuracy heartbeat classification using advanced classification

techniques or strategies is implemented in the third part, taking advantage of strong com-
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puting ability and large memories of the cloud server. Each possible abnormal heartbeat

is classified into a specific type of arrhythmias, and diagnosis suggestions are provided by

physicians.

ECG data

Normal/Abnormal

classification

Multi-class heartbeat

classification and

diagnosis

Mobile Cloud/ServerECG sensor

Fast life-threatening

arrhythmia detection

Physicians/

Family members/

Emergency centres

Yes

No

Critical?

Figure 1.6: Resource-saving CLT-ECG data processing.

1.2.2 Life-Threatening Arrhythmia Detection

Life-threatening ventricular arrhythmias such as ventricular fibrillation (VF), ventricular

flutter (VFL), and rapid ventricular tachycardia (VT) et al., may cause sudden cardiac

arrest or death if no immediate therapy is provided within a few minutes [10–12], especially

in an out-of-hospital situation. Henceforth, continuous monitoring and real-time detection

for these critical heart arrhythmia are necessary, which will help achieve a high probability

of survival for patients.

Many research efforts have been dedicated into this area. The detection performance

using a single feature for the life-threatening arrhythmias is limited mainly by the inter-

patient ECG variation. Multi-features and multi-classifiers in a large number of algorithms

are intensively explored to improve VA detection performance. However, few of them si-

multaneously consider both the detection performance and real-time performance, as well as

patient-specific information.

We are motivated to 1) propose new personalized ECG features using the patient-specific
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ECG heartbeat waveform, in order to reduce the impact of inter-patient ECG variation; 2)

select a small set of the most effective features from the newly-extracted and previously-

existing features, aiming to meet the requirement of real-time application.

1.2.3 Resource-Saving System Strategy

An anomaly-trigged CLT-ECG transmission system is proposed according to practical needs.

To realize the anomaly-trigged ECG data transmission, the key step is to separate the normal

heartbeat types from the abnormal ones.

There are generally two types of methods in the literature, that is, syntactic methods

and machine learning based methods. Syntactic methods identify the abnormal heartbeats

by comparing certain extracted features with a set of clinical or practical-verified rules, with

explicit physical meanings and is easily interpreted. However, the performance of syntactic

methods heavily relies on the accuracy and the types of the extracted features, while seldom

considering the relationship among features.

Rather than syntactic methods, machine learning based methods can make a prediction

on an unknown heartbeat based on a whole set of extracted features, taking the relationship

of these features into consideration, thus, decreasing the impact of a certain single feature.

Comparing with unsupervised learning, supervised learning has a higher classification accu-

racy and is more popular in academic purpose when an amount of pre-labeled normal and

abnormal heartbeats are provided. However, in practical usage, most heartbeats in an ECG

data stream are normal ones, and complete information about abnormal ECG heartbeats is

not easy to obtain in terms of the appearance time and the types, which has a big impact on

the performance of supervised learning. Deep learning, another group of machine learning

methods, such as deep long short-term memory networks, convolutional neural networks and

general regression neural networks, is limited by the high computing complexity and implicit

interpretation. Thus, a simple unsupervised learning seems more suitable for the anomaly-
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trigged ECG data transmission, to combine the advantages of both syntactic methods and

machine learning based methods.

Hence, a novel normal and abnormal classification method is proposed for a resource-

saving CLT-ECG system, assisting in anomaly-trigged transmission. This method is ex-

pected to have explicit physical meanings and can be easily interpreted, as well as consid-

ering the relationship between features. More importantly, this proposed method is less

impacted by the electrode placement variation, which measures the relative changes between

consecutive heartbeats.

1.2.4 Cloud based Non-Life-Threatening Arrhythmia Classifica-

tion

In the CLT-ECG monitoring system, besides timely alarming for certain critical heart dis-

eases and efficiently transmitting real-time ECG data streams, the most concerned prob-

lem is the automatic patient-specific ECG heartbeat classification. Earlier detection for

non-life-threatening ECG arrhythmias is important for specific therapy, before degrading to

life-threatening arrhythmias.

Other than the general classification of normal and abnormal heartbeats for data trans-

mission, automatic ECG heartbeat classification is expected to conduct fine classification and

provide more detailed reference information for clinical diagnosis, which does not strictly re-

quire real-time performance and is not sensitive to the computing complexity. Thus, the

automatic classification task is suitable to implement in the cloud server under the proposed

system scheme, preferring a higher classification performance accuracy.

According to the Association of the Advancement for Medical Instrumentation (AAMI)

standard, up to 16 types of heartbeats are grouped into five categories, namely, V (ventricular

ectopic beats (VEBs)), S (supraventricular ectopic beats (SVEBs)), F (fusion beats), Q

(unknown beats) and N (beats not included in V, S, F and Q). Among these five categories,
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VEBs and SVEBs draw most attention in the academic research as well as clinical practice.

A lot of research efforts have been dedicated to the detection of VEBs and SVEBs using

the global classifier, the local classifier, or the combination of them. The global classifier

generally refers to the classifier trained with ECG data from the public ECG database,

excluding the current test subject data. The local classifier generally refers to the classifier

trained with only the ECG data from the test subject, which is separated from the test

data of the same subject. However, due to the inter-patient variation, the classification

performance by the global classifier is not consistent for different individuals. Besides, even

if a local classifier is combined with the global classifier, the classification performance is

hardly effectively improved when there are no desired abnormal heartbeats appearance in

the training data from the tested subject. A new patient-specific automatic ECG heartbeats

classification method for non-life-threatening arrhythmias is thus proposed.

1.3 Contributions and Organization

In Chapter 2, to realize the real-time life-threatening arrhythmia detection, firstly, a set

of new personalized, simple temporal features are proposed based on the correlation coef-

ficients between a patient-specific QRS-complex template and the heartbeats of the same

patient. Using Support Vector Machines (SVMs), classification performance of different fea-

ture combinations is studied. The best two-feature combination and the best three-feature

combination which include the newly-proposed features aveCC and medianCC respectively,

outperform the previous top-two and top-three feature combinations.

In Chapter 3, a novel normal and abnormal classification algorithm is proposed for the

proposed resource-saving CLT-ECG monitoring system, to realize the anomaly-trigged data

transmission. Considering the explicit physical meanings and classification performance,

one unsupervised learning method using One-Class SVMs (OC-SVMs) is explored on two
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categories of features, one morphological feature WCI, and one RR interval based feature

modRRIR. Different from the existing waveform based morphological features, WCI indicates

the change happened in any of P-segment, QRS-segment and T-segment in a complete

heartbeat, avoiding neglecting the change in P-segment and T-segment caused by QRS-

segment or noise. Finally, an appropriate combination scheme is designed to achieve an

acceptable detection rate of the abnormal heartbeats.

In Chapter 4, a fully-automatic patient-specific classification method is proposed in terms

of inter-patient and intra-patient variations. A set of intra-beat features and a set of inter-

beat features are extracted using static measurement and dynamic measurement, respec-

tively. A fusion strategy of the global classifier and the local classifier is also proposed to

realize the fully-automatic classification. The method is verified in the simulation result.

In Chapter 5, the conclusion and the future work of this dissertation are presented.

The conclusion separately summarizes the results obtained from Chapters 2-4. The future

work proposes two promising research directions: exploitation of disease-specific features

and integration of experienced ‘classifiers’ and development of behavior-adaptive arrhythmia

classification algorithms.
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Chapter 2

Life-Threatening Ventricular

Arrhythmia Detection with

Personalized Features

The timely detection of life-threatening ventricular arrhythmias (VAs) is critical to saving

a patient’s life. General features characterizing ECG waveforms are extracted for VA de-

tection. To take into account the subtle differences in the QRS-complexes among different

people, new personalized features are proposed in this chapter based on the (SVM) cor-

relation coefficient between a patient-specific regular QRS-complex template and his/her

real-time ECG data. Small sets of the most effective features are chosen with SVMs from 11

newly-extracted and 15 previously-existing features, for efficient performance and real-time

operation. Our proposed new features aveCC and medianCC are verified to be effective

to enhance the performance of existing features under both the record-based and database-

based data divisions. Through 50-time random record-based data divisions, all combinations

of two features and three features are tested. The top two-feature combination is VFleak

and aveCC, which achieves an area under curve value (AUC) of 98.56%± 0.89%, specificity
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(SP) of 94.80%± 2.15% and accuracy (ACC) of 94.66%± 1.97%; the top three-feature com-

bination is VFleak, MEA and aveCC, which obtains an AUC of 98.98% ± 0.58%, SP of

95.56% ± 1.45%, ACC of 95.46% ± 1.36%; these results outperform the previous top-two

and top-three feature combinations. Similar results are obtained on the database-based data

division.

2.1 Introduction

VF, VFL and rapid VT, are life-threatening ventricular arrhythmias (VAs), which may

cause sudden cardiac arrest and even death if timely therapy is not conducted within a few

minutes [10–12]. A high quality, easily implementable, fast ventricular arrhythmia (VA) de-

tection algorithm will help achieve a high probability of survival from out-of-hospital heart

attack incidents. Henceforth, many research efforts have been dedicated to developing effec-

tive VA detection algorithms, aiming to achieve a trade-off between classification performance

and real-time performance.

A large number of algorithms for VA detection have been proposed and evaluated in the

literature. Detection methods using a single effective feature are proposed, of which features

are extracted in temporal/morphologic domains [13–15], spectral domain [16–18] or other

domains [11, 19–21]. Jekova et al. [22] conduct comparative assessment of five previously-

existing VA detection algorithms. Amann et al. [11] evaluate multiple algorithms for VA

detection, to verify the proposed algorithm using a single feature. However, the detection

performance by using one single feature is limited [23]. One of the key reasons is that the

ECG signals vary from one person to another [24], and also change according to different

body movements or emotional status even for the same person [25].

To improve VA detection performance, multi-feature classification is investigated, with

the aim to obtain the most effective feature set by feature selection techniques [23, 26–
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29] or classifier-based methods [30–32]. Recent studies about multi-feature VA detection

are presented in [23, 26, 31], using a large number of ECG data from the public databases

and achieving superior performance over that of a single feature. Li et al. [31] select a

subset of nine features from 14 features using genetic algorithm, further two most effective

features using SVMs. Alonso-Atienza et al. [23] propose a new filter-type feature selection

technique, obtaining nine features to build a simplified high-performance SVM detector for

VA detection. Figuera et al. [26] explore the difference in the detection of shockable rhythms

involving public and out-of-hospital cardiac arrest data. Thirty previously-defined ECG

features and five state-of-the-art machine learning classifiers are investigated. Papers [23,26,

31] obtain desired feature sets from the previously existing features, and show generalized

classification results, however, without considering any patient-specific information.

In recent years, personalized medicine has received increasing attention, especially as

the Internet based wearable technology allows a significant amount of personal data to be

collected. Aramendi et al. [33] assess the performance of two spectral and two morphological

features for adult and paediatric VA detection and the result shows that the morphological

parameters present significant differences between the adult and paediatric patients because

of the faster heart rates of the paediatric rhythms. Irusta et al. [34] propose a high-temporal

resolution algorithm to discriminate shockable from nonshockable rhythms in adults and

children. Both [33] and [34] show the individual differences in two distinct populations of

adults and children.

Some research on personalized ECG classification consider training with a patient’s own

ECG records [35,36], using known general existing features in the literature. One drawback

of these methods is that a patient’s data cannot include all kinds of arrhythmia events, and

hence is limited in arrhythmia training varieties and data size. Furthermore, these methods

do not examine deeper the characteristics of individual ECG waveforms which are unique

to each person and can be used as a personal identification signature [37], missing potential
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effective personalized ECG features.

In this chapter, we are motivated to 1) propose new personalized ECG features using the

patient-specific ECG heart beat waveform; 2) select a small set of the most effective features

from the newly-extracted and previously-existing features, aiming to meet the requirement

of real-time application. The newly-extracted personalized features are based on the cor-

relation between a patient’s regular QRS-complex template extracted from the pre-selected

regular/normal sinus rhythms (NSRs) and the incoming ECG signal for VA detection.

Since our proposed VA detection method is correlation based, the applications of corre-

lation in ECG signal processing are firstly reviewed here. Correlation based techniques have

been widely used in the past, mainly in three types of applications: 1) heart rate detec-

tion [38]; 2) alignment method for heart beats [39]; 3) ECG classification [12,29,40,41]. For

ECG classification, Dutta et al. [40] present a cross-correlation based three-class ECG clas-

sification algorithm, to separate normal beats, PVC beats and other beats. They extract 20

features from the magnitude and the phase of the cross-spectral density which is calculated

from the Fourier transform of the cross-correlation sequences between each beat signal and

one normal reference beat signal. For VA detection, Chen et al. divide the incoming ECG

signal into short fixed-length segments and calculate the autocorrelation function (ACF) of

each segment [11, 29]. If the peak magnitudes of the ACF as a function of time lags do

not pass a linear regression test, it is then determined that the test rhythm is subject to

VF. Chin et al. [12] classify ECG segments based on the correlation coefficients between

the testing segment and the pre-extracted templates respectively for VT and VF, as well

as NSR. However, VF is a random-like signal and a fixed template of VF cannot be very

accurate. The classification performance is therefore not very good. Hammed et al. [41] use

a hard correlation threshold at 0.85 to distinguish the normal and abnormal beats. Such

fixed threshold cannot easily adapt to personalized ECG data, noise levels and measurement

platforms.



21

In general, correlation based approaches have two drawbacks: 1) the correlation result is

directly affected by noise and interference in the ECG signal; 2) calculation of the correlation

coefficients/function can be time-consuming because of the sliding operation in template

matching.

Keeping these in mind, we explore new ways to obtain correlation coefficients (CCs)

between the normal ECG template and testing ECG signal with reduced complexity, and

search for effective CC based features for VA classification using public ECG databases.

The result has potential usage in the surface CLT-ECG monitoring [42] and automated

external defibrillator (AED). In particular, the contributions of this chapter are summarized

as follows.

• This chapter proposes to extract a range of new personalized, simple temporal features

originating from the correlation coefficients between a patient-specific QRS-complex

template and the heart beats of the same patient.

• This chapter studies classification performances using different feature combinations,

and the best two-feature combination and the best three-feature combination which

include the newly-proposed feature aveCC and medianCC respectively, outperform

those mentioned in current reported methods [23, 31].

The rest of this chapter is organized as follows. Section 2.2 introduces the ECG databases,

the data preprocessing and feature extraction. Section 2.3 presents personalized feature

extraction. Section 2.4 introduces the classification algorithm SVM. Section 2.5 conducts

simulation and shows the superiority of the proposed method. Section 2.6 concludes this

chapter.
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Table 2.1: Database introduction (segment length: 8 seconds).

Database Record index Number fs (Hz) VA segments Non-VA segments Total segments
VFDB 1-22 22 250 1027 4737 5764
MITDB 23-70 48 360 20 10780 10800
CUDB 71-105 35 250 464 1710 2174
Total 1-105 105 N/A 1511 17227 18738

2.2 Data Preparation

2.2.1 Database Information

Three commonly-used ECG databases are used in this chapter: MIT-BIH arrhythmia database

(MITDB) [43], Creighton University Ventricular Tachyarrhythmia Database (CUDB) [44],

and MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB) [45]. MITDB is com-

posed of 48 records from different patients and each record contains 30-minute 2-channel

ECG data with the sampling rate of 360 Hz. CUDB includes 35 records of 8-minute single-

channel ECG data, of which the sampling frequency is 250 Hz. VFDB includes 22 records

of 30-minute 2-channel ECG data with the sampling rate of 250 Hz. In this study, only the

first channels of records in MITDB and VFDB are used. Moreover, the four paced records

in MITDB have been kept. The specifications about these three databases are presented in

Table 2.1.

2.2.2 Data Preprocessing

The ECG data records are inevitably contaminated by external noises [46] and the ECG

signals of interest fall in a specific frequency range. Henceforth, it is necessary to process the

raw ECG data before feature extraction is conducted. To this end, the databases downloaded

from the online sources [43–45] are preprocessed in the same way as in [23]: 1) the mean

value is subtracted from the measured ECG signal; 2) the signal is filtered using a five-order

moving average filter; 3) the baseline wander is removed using a high-pass filter with the 1 Hz
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cut-off frequency; 4) the high-frequency noise is eliminated using a second-order Butterworth

low-pass filter with the cut-off frequency at 30 Hz.

The preprocessed data are segmented and labeled as VAs or non-VAs by the following

labeling rule [23]. VAs include VF, VFL and VT, whereas non-VAs consist of all other

rhythms. The rule of segment labeling is: one segment is labeled as +1 if no less than 50%

of the data inside this segment are VAs; otherwise, this segment is labeled as -1. The segment

length is 8 seconds by default. As can be observed in Table 2.1, MITDB contains very few

VA rhythms whereas CUDB includes a lot. The reason that MITDB is still included in the

dataset, is to verify general classification performance of the proposed method when up to

15 other rhythms of MITDB are present at the same time.

2.2.3 Feature Extraction

Each feature characterizes the corresponding segment, distinguishing a VA segment from a

non-VA segment. In the literature, many different types of features extracted from an ECG

data segment have been studied, and some of them are summarized in Table 2.2. Basically,

these features can be divided into three types, temporal/morphological features, spectral

features and complexity features.

In this chapter, we propose five correlation coefficient related features and six R-peak

related features for VA detection. These new features are highlighted in bold in Table 2.2.

aveCC, devCC, minCC, maxCC and medianCC are correspondingly the average, the stan-

dard deviation, the minimum, the maximum and the median of CCs calculated in one seg-

ment; aveRR, devRR, minRR, maxRR, and medianRR respectively represent the average,

the standard deviation, the minimum, the maximum, and the median of RR intervals in one

segment; numPeaks is the number of R-peaks in one ECG segment. Details about these

features are elaborated in Section 2.3.
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Table 2.2: Features extracted.

Class Features

Temporal/Morphological features • Threshold crossing interval (TCI) [14]

• Threshold crossing sample count (TCSC) [13]

• Auxiliary counts (Count2) [18]

• Standard exponential (STE) [11]

• Modified exponential (MEA) [11]

• Mean absolute value (MAV) [15]

• aveCC, devCC, minCC, maxCC, medianCC

• numPeaks

• aveRR, devRR, minRR, maxRR, medianRR

Spectral features • VF filter (VFleak) [18]

• Spectral algorithm (M, A2 and A3) [16]

• Median Frequency (FM) [17]

Complexity features • Complexity measurement (CM) [19]

• Phase space reconstruction (PSR) [20]

• Hilbert transform (HILB) [47]

• Sample entropy (SpEn) [21]

2.3 Personalized Feature Extraction

It is well known that each person has a unique QRS-complex [37]. If we use a person’s regular

QRS-complex as a normal template, correlating the person’s ECG data samples with the

template would give us a subtle indicator how similar the measured beat and the regular beat

template are. In the case of severe arrhythmia events such as VAs, the similarity, in other
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words, the correlation coefficient will distribute randomly. Therefore, the CC related features

are potentially useful incorporating the patient-specific ECG signature for VA classification.

As mentioned in the introduction, traditional sliding operation for template matching in the

CC calculation is computational complex.

Here we propose to simplify the CC calculation and extract new features based on the CC

set from one segment. Considering the fact that QRS-complex detection is required in most

ECG applications, R-peak positions would already be known after QRS detection. Therefore,

we propose to simplify the CC calculation by circumventing sample sliding. Instead, align the

detected R-peak with the template R-peak and compute the correlation coefficient between

the QRS template and the beat corresponding to each R-peak in the segment. For segment

based feature extraction, there are multiple R-peaks and hence multiple CCs in one segment.

Next we try to obtain effective features based on these coefficients. There are several ways to

derive a CC feature from the CC set of one segment. For example, the median, the average,

the standard deviation, the minimum or the maximum of the set are all tested. aveCC and

medianCC will be shown later to achieve the superior performances.

To be more specific, the CC related feature extraction is implemented by two successive

stages: the QRS-complex detection and the CC related feature extraction. Besides, six R-

peak related features are extracted at the same time as a comparison. The details of the

two-stage feature extraction are presented next.

2.3.1 QRS Detection

QRS detection is the first stage for the personalized feature extraction. The objective of QRS

detection is to identify the R-peaks. The QRS-complexes are detected by the well-known

Pan and Tompkins (P & T) QRS-complex detection algorithm [48]. The preprocessed ECG

signal goes through operations of bandpass filtering, derivative, squaring and moving-window

integration. The QRS detection identifies a windowed ECG waveform as the QRS-complex,
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with the window length approximately the same as the maximum possible width of a QRS-

complex. Then a peak detector finds the maximum point within this window as the R peak.

The details are described in [39].

In this stage, six RR related features are extracted for one segment, namely, aveRR,

devRR, minRR, maxRR, medianRR and numPeaks.

2.3.2 New Feature Extraction after QRS Detection

Based on the QRS detection, the second stage about the CC related feature extraction is

introduced. The average normal QRS-complex template for each person is obtained with

QRS detection. The feature extraction procedure and the qualitative analysis of the CC

related features are described as follows.

The general flow-chart of the proposed feature extraction algorithm is shown in Fig. 2.1:

first, data preprocessing such as filtering and data segmentation is conducted when raw

real-time ECG data come in; then, for each segment, the QRS detection are applied and a

set of R peaks is located; based on the RR set, six R-peak related features are calculated;

meanwhile, with each detected R peak as a fiducial point, each value of a CC set is obtained

from aligning the prepared QRS-complex template with the corresponding detected QRS-

complex and calculating the correlation coefficient of the two time series (Fig. 2.2); based

on the CC set, five CC related features are extracted. The mathematical description of

the feature extraction is introduced in Algorithm 1. The ECG segment to determine the

template was manually selected for each record, and in practice this can be done in an

initialization phase in a portable ECG monitor or holter. Thus the QRS-complex template

is established after the QRS detection in our simulation as described by Step 3 in Algorithm

1. Automatic determination and update of the template can be designed for real-time ECG

as future work.

As shown in Figs. 2.3-2.5, the detected R-peaks by the P & T algorithm are marked using
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Real-time ECG
data flow

Data preprocessing

QRS detection

medianCC, aveCC, 
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and maxCC

Cross-correlation 
coefficient set

Average normal QRS-
complex template

aveRR, devRR, minRR, 
maxRR, medianRR 

and numPeaks

Figure 2.1: General flow-chart for extracting the RR related features and the CC related
features.
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Figure 2.2: CC related feature extraction.

red circles, including real R-peaks and mistakenly detected R-peaks. For the NSR segments,

the detected R-peaks are almost the real R-peaks based on the fact that QRS detection rate

is high [48]. However, the random property of a VA segment leads to the randomness for
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detected R-peaks. Given the fact that the detected R-peak positions in VA segments are

random, the CC calculated from the R-peak alignment will be low because the VA waveform

has dissimilar shapes to the average normal template. As shown in Fig. 2.6, the values of

medianCC are generally high for non-VA segments while they are in the low range for VA

segments on the complete dataset.
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Figure 2.3: One segment of NSR from the first record in CUDB.
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Figure 2.4: One segment of VF from the first record in CUDB.
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Figure 2.5: One segment of VT from the third record in VFDB.
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Figure 2.6: The probability histogram of medianCC on the complete dataset.
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Algorithm 1 Personalized feature extraction

1: Identify the R-peaks in each segment. Real-time ECG data flow is firstly divided into

segments of a fixed length of Ls seconds (Ls = 8 s by default). For the ith segment, Ji

R-peaks are detected by the P & T QRS-complex algorithm. Thus, the R-peak set is

denoted as Ri = {Ri1, Ri2, . . . , Rij, . . . , RiJi}, j = 1, 2, · · · , Ji. According to the fiducial

point Rij , the j
th QRS-complex time series under the temporal window of Lt milliseconds

(Lt is set as 160 ms according to the statistical QRS-complex duration of normal beats),

is expressed as sj = {sj1, sj2, . . . , sjk, . . . , sjK}, sjk represents the kth ECG data sample,

k = 1, 2, · · · , K, and K = Lt ∗ fs, as shown in Fig. 2.2.

2: Calculate the RR set for the ith segment and extract the RR related features based on

the RR set. The RR set is calculated by

ri = r1, r2, . . . , rj, . . . , rJi−1, (2.1)

rj = Ri(j+1) − Rij.

The RR related features are obtained by

aveRRi =
1

Ji − 1

Ji−1
∑

j=1

rj;

devRRi =
1√

Ji − 2
‖ri − aveRRi‖2 (‖·‖2 − L2 norm); (2.2)

minRRi = min(ri); maxRRi = max(ri);

medianRRi = median(ri); numPeaksi = Ji.

3: Extract the normalized average normal QRS-complex template for each patient. A pre-

selected normal segment from each record is denoted as the tth segment. Then in the

template segment, a series of Jt R-peaks is detected and denoted as Rt. The correspond-

ing Jt QRS-complex time series are aligned by R-peaks, averaged, and normalized into

the range of [0,1]. The normalized average QRS-complex template is expressed by

s = {s1, s2, · · · , sk, · · · , sK}. (2.3)
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4: Calculate the CC set for the ith segment and extract the CC related features based on

the CC set. The CC set is calculated by

ci = {c1, c2, . . . , cj, . . . , cJi}, cj =
∑K

k=1 sksjk
‖s‖2 ‖sj‖2

. (2.4)

The CC related features are obtained by

medianCCi = median(ci); aveCCi =
1

Ji

Ji
∑

j=1

cj;

devCCi =
1√

Ji − 1
‖ci − aveCCi‖2 ; (2.5)

minCCi = min(ci); maxCCi = max(ci).

5: Repeat from Step 2 to Step 4 to get CC related values for all the segments.

6: End.

2.4 Classification Algorithm

SVM is a widely used and effective algorithm in the literature [49,50]. Among the numerous

variants of SVMs, the soft-margin SVM using a Gaussian kernel function is widely adopted in

practical classification problems. This method can classify data having non-linear relation-

ship with features, and also non-separable data with a designed or minimum error rate [51].

The SVM model is confirmed through two-stage operations: the first stage is to train this

model on the training set; the second stage is to evaluate the classification performance of

the model on the test set. The model with desired performance is finally determined. The

basic SVM operation is described as follows.

Given any feature vectors xi ∈ R
M×1 and the corresponding labels yi ∈ {+1,−1} on the
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training set, the following optimization problem is solved

min
w,b,si

1

2
‖w‖2 + τ

N
∑

i=1

si

subject to yi(w
Tφ(xi) + b) ≥ 1− si,

si ≥ 0 for i = 1, ..., N,

(2.6)

where the weight vector w ∈ R
M×1, xi ∈ R

M×1, φ(xi) is a linear or nonlinear transformation

of xi, φ(xi) ∈ R
M×1, si represents the violation value of data pair (xi, yi) to the classification

boundaries, τ is the cost parameter for the violation chosen by users, and b is an unknown

constant.

By using Lagrange multipliers, the Lagrange dual problem of (2.6) is expressed as

min
µ1,µ2,··· ,µN

1

2

N
∑

i,j=1

µiyiµjyjKG(xi,xj)−
N
∑

i=1

µi

subject to

N
∑

i=1

µiyi = 0, 0 ≤ µi ≤ τ,

(2.7)

where µi is a Lagrange multiplier corresponding to the constraints of (2.6), KG(xi,xj) =

e−‖xi−xj‖
2/2σ2

, is called a Gaussian kernel and σ is a user-defined parameter. After solving

(2.7) and obtaining the Lagrange multiplier set, the first stage of SVM classification is

completed.

The second stage for SVM classification is to evaluate the performance of the classification

model. For any known feature vector x̂ on the test set, the predicted label ŷ is obtained as

ŷ = sign(
N
∑

i=1

µiyiKG(xi, x̂) + b). (2.8)

By comparing the predicted labels with the true labels on the whole test set, the clas-

sification performance is analysed by calculating performance indices. There are several
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commonly-used statistical indices to characterize the classification performance, such as

the sensitivity (SE), the specificity (SP), the accuracy (ACC), the area under the curve

(AUC), the false positive rate (FPR), the positive prediction (PP) and the balanced error

rate (BER) [23].

2.5 Simulation

In this section, the effectiveness of the proposed personalized features for VA classification

using SVM are evaluated through simulation. A total number of 105 records are considered

in this chapter. In order to guarantee the data independence between the training dataset

and the test dataset [52], a record-based data division and a database-based data division

are both employed. As seen in Table 2.1, the classification problem we deal with is a binary

classification of unbalanced data. To solve the unbalanced classification problem, τ in the

SVM optimization problem (Eq. (6)) is assigned different values for the VA (positive) class

and the non-VA (negative) class, according to the practical proportion of these two classes in

the training set. (Note: Features or feature combinations in the following tables are sorted

by AUC.)

For the record-based data division [31], the whole dataset is divided by randomly choosing

70% records (74 records) as the training set and the left 30% records (31 records) as the

test set. This data division procedure is repeated 50 times. The SVM classifier is trained

on the training set and validated on the test set. The mean and the standard deviation

of the 50-time classification performances on the test set are calculated and presented in

tables. The performances are sorted descendingly according to AUC values for different

feature combinations.

First, Table 2.3 shows the classification performance using SVM with a single feature.

TCSC performs well in terms of BER and AUC. VFleak ranks the best in SP, PP and ACC.
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Our proposed feature medianCC achieves the highest SE among all the features.

Table 2.4 shows the classification performance using two features chosen from the feature

set. There are 171 two-feature combinations in total. The top-ten feature combinations with

the highest AUC values are presented. Our proposed feature aveCC and medianCC, com-

bined with VFleak respectively, achieve the best two AUC values, whereas the combination

of aveCC and VFleak also obtains the highest SP and ACC.

Table 2.5 shows the classification performance with three-feature combinations. Among

969 three-feature combinations, the new features, aveCC and medianCC, separately working

with VFleak and MEA, achieve the highest two AUC values, which is consistent with the

results presented in Table 2.4. The combination of VFleak, MEA and aveCC performs the

best in terms of SP, PP, ACC, BER and AUC, with an acceptable SE, compared with two

top-three combinations mentioned in the previously existing chapters, i.e., the combination

of TCSC, VFleak and SpEn [23], and the combination of Count2, VFleak and A3 [31].

Furthermore, in the top-ten combinations with the highest AUC values, aveCC appears four

times and medianCC appears five times, only after VFleak.

For the database-based data division, we do simulations to test three-feature combina-

tions, namely, any two databases as the training set and the third one as the test set. As

there are only a few VA segments in the MITDB database (shown in Table 2.1), MITDB

database is only used in the training sets, combined with CUDB or VFDB, involving up to

15 other rhythms as kind of interference.

For data from CUDB as the test set, among 969 three-feature combinations, the best

three-feature combination are (medianCC, MAV, SpEn); medianCC and aveCC appear re-

spectively 6 times and 5 times in the top-ten three-feature combinations, as shown in Ta-

ble 2.6. For data from VFDB as the test set, the best ones are (VFleak, medianCC, MEA);

medianCC and aveCC appear respectively 4 times and 3 times, as shown in Table 2.7.

The limitation of the proposed method is that our used QRS-complex template is not
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designed to be adaptive in this chapter. This is not a problem when using the open source

databases, as the regular normal beat signals do not vary much in each record. Besides, the

template we used is the QRS-complex (R complex), which is known as a function of distance,

other than the heart rate. So the R complex remains fairly constant with changes in heart

rate, other than the P complex or the T complex [37]. In the real time online application of

this template, the patient-specific fixed template should be further verified at different heart

rates.

Table 2.3: Performance of single feature on test sets.

feature 1 SE (%) SP (%) PP (%) ACC (%) BER (%) AUC (%)
TCSC 95.64 ± 2.77 92.23 ± 3.25 51.94 ± 12.02 92.54 ± 2.98 6.06 ± 2.18 97.45 ± 1.34
VFleak 90.00 ± 4.80 95.65 ± 2.47 64.89 ± 14.39 95.25 ± 2.35 7.17 ± 2.83 97.17 ± 1.84
MAV 95.57 ± 2.54 91.62 ± 3.10 49.81 ± 11.59 91.97 ± 2.84 6.40 ± 2.02 97.03 ± 1.71
PSR 93.13 ± 3.13 91.60 ± 2.83 48.84 ± 11.71 91.74 ± 2.57 7.63 ± 1.93 96.32 ± 1.38
HILB 87.95 ± 10.33 90.94 ± 3.55 46.09 ± 12.03 90.64 ± 2.96 10.56 ± 4.61 95.85 ± 1.49
SpEn 88.55 ± 9.78 89.43 ± 3.98 42.44 ± 11.91 89.29 ± 3.37 11.01 ± 4.45 95.23 ± 2.01
A2 80.41 ± 6.44 95.07 ± 3.03 60.41 ± 16.66 93.94 ± 2.77 12.26 ± 3.36 93.50 ± 2.67
medianCC 97.28 ± 1.58 84.51 ± 3.47 34.94 ± 9.02 85.51 ± 3.18 9.11 ± 1.73 92.54 ± 2.32
MEA 84.85 ± 9.74 85.25 ± 4.24 33.33 ± 9.59 85.14 ± 3.57 14.95 ± 4.39 92.26 ± 2.24
TCI 87.53 ± 4.58 83.71 ± 4.15 31.88 ± 10.09 84.03 ± 3.79 14.38 ± 2.76 92.16 ± 2.33
aveCC 93.28 ± 4.87 83.87 ± 3.59 33.13 ± 8.51 84.59 ± 3.20 11.42 ± 2.36 92.14 ± 2.31
Count2 85.36 ± 5.24 84.72 ± 4.19 33.09 ± 11.08 84.76 ± 3.84 14.96 ± 3.00 91.11 ± 2.52
A3 78.31 ± 8.30 88.17 ± 3.38 36.67 ± 11.17 87.34 ± 2.99 16.76 ± 4.12 90.32 ± 3.48
M 83.79 ± 6.08 84.90 ± 3.58 32.59 ± 9.90 84.80 ± 3.34 15.65 ± 3.49 89.94 ± 3.36
numPeaks 75.42 ± 6.89 89.43 ± 4.13 39.19 ± 12.19 88.38 ± 3.71 17.58 ± 3.45 88.69 ± 3.74
FM 80.02 ± 8.63 70.54 ± 6.06 19.04 ± 5.72 71.21 ± 5.42 24.72 ± 4.01 83.52 ± 4.29
STE 58.12 ± 6.18 91.86 ± 3.14 39.25 ± 13.96 89.19 ± 2.68 25.01 ± 3.15 80.33 ± 3.46
CM 68.67 ± 12.92 73.36 ± 10.67 19.79 ± 8.29 72.72 ± 9.31 28.99 ± 5.47 78.56 ± 6.86
maxRR 17.34 ± 20.82 87.24 ± 16.89 NaN ± NaN 81.11 ± 13.55 47.71 ± 3.52 61.78 ± 5.26

Table 2.4: Performance of combinations of two features on test sets.

feature 1 feature 2 SE (%) SP (%) PP (%) ACC (%) BER (%) AUC (%)
VFleak aveCC 92.60 ± 5.27 94.80 ± 2.15 60.62 ± 11.27 94.66 ± 1.97 6.30 ± 2.67 98.56 ± 0.89
VFleak medianCC 93.18 ± 4.92 94.45 ± 2.34 59.33 ± 12.00 94.38 ±2.15 6.18 ± 2.60 98.55 ± 0.94
TCSC TCI 94.80 ± 3.33 92.79 ± 3.36 54.00 ± 13.04 92.98 ± 3.07 6.20 ± 2.30 98.38 ± 0.79
TCSC MEA 95.06 ± 2.90 92.59 ± 3.32 53.31 ± 12.59 92.82 ± 3.03 6.17 ± 2.14 98.37 ± 0.74
TCSC SpEn 94.82 ± 3.37 92.99 ± 3.27 54.67 ± 12.94 93.17 ± 3.00 6.10 ± 2.28 98.36 ± 0.82
MAV SpEn 94.40 ± 3.41 93.12 ± 3.35 55.23 ± 13.64 93.26 ± 3.08 6.24 ± 2.33 98.35 ± 0.87
TCSC VFleak 94.51 ± 4.51 93.47 ± 2.95 56.13 ± 12.58 93.60 ± 2.73 6.01 ± 2.69 98.24 ± 1.05
VFleak SpEn 91.46 ± 5.26 94.77 ± 2.84 60.90 ± 14.79 94.54 ± 2.71 6.89 ± 3.16 98.24 ± 1.14
TCSC Count2 93.59 ± 4.11 92.90 ± 3.36 54.07 ± 12.98 92.99 ± 2.99 6.76 ± 2.24 98.19 ± 1.01
MAV MEA 94.32 ± 3.07 92.74 ± 3.35 53.73 ± 13.05 92.90 ± 3.05 6.47 ± 2.10 98.19 ± 0.95
TCSC SpEn [23] 94.82 ± 3.37 92.99 ± 3.27 54.67 ± 12.94 93.17 ± 3.00 6.10 ± 2.28 98.36 ± 0.82
VFleak Count2 [31] 88.96 ± 5.85 95.98 ± 2.29 66.33 ± 14.45 95.46 ± 2.12 7.53 ± 3.04 97.65 ± 1.38
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Table 2.5: Performance of combinations of three features on test sets.

feature 1 feature 2 feature 3 SE (%) SP (%) PP (%) ACC (%) BER (%) AUC (%)
VFleak MEA aveCC 93.87 ± 3.80 95.56 ± 1.45 63.81 ± 10.53 95.46 ± 1.36 5.28 ± 2.00 98.98 ± 0.58
VFleak medianCC MEA 93.93 ± 3.94 95.50 ± 1.58 63.59 ± 11.21 95.40 ± 1.47 5.29 ± 2.07 98.96 ± 0.62
VFleak medianCC SpEn 93.44 ± 4.51 95.08 ± 2.19 62.12 ± 12.09 94.98 ± 2.05 5.74 ± 2.45 98.94 ± 0.68
VFleak aveCC TCI 93.48 ± 4.16 95.44 ± 1.61 63.20 ± 10.58 95.31 ± 1.53 5.54 ± 2.23 98.92 ± 0.66
VFleak SpEn aveCC 93.07 ± 4.97 95.06 ± 2.17 61.90 ± 11.79 94.93 ± 2.00 5.93 ± 2.61 98.91 ± 0.68
VFleak medianCC TCI 93.85 ± 4.25 95.36 ± 1.68 63.00 ±10.89 95.27 ± 1.58 5.39 ± 2.28 98.90 ±0.69
VFleak medianCC Count2 92.86 ± 4.59 95.16 ± 1.85 61.97 ± 11.62 95.02 ± 1.64 5.99 ± 2.22 98.87 ± 0.65
VFleak Count2 aveCC 92.85 ± 4.51 95.27 ± 1.77 62.49 ± 11.18 95.11 ± 1.57 5.94 ± 2.15 98.87 ± 0.64
VFleak aveCC CM 93.59 ± 4.49 95.06 ± 2.20 62.31 ± 11.59 94.98 ± 2.01 5.68 ± 2.34 98.83 ± 0.78
TCSC VFleak medianCC 95.22 ± 3.78 94.10 ± 2.69 58.84 ± 12.42 94.23 ± 2.48 5.34 ± 2.25 98.80 ± 0.66
TCSC VFleak SpEn [23] 93.98 ± 4.61 93.68 ± 3.07 57.09 ± 13.48 93.75 ± 2.85 6.17 ± 2.77 98.63 ± 0.86
Count2 VFleak A3 [31] 88.69 ± 5.88 96.00 ± 2.31 66.49 ± 14.49 95.47 ± 2.14 7.65 ± 3.05 97.65 ± 1.38

Table 2.6: Evaluation performance on CUDB with VFDB and MITDB as the training set.

feature 1 feature 2 feature 3 SE (%) SP (%) PP (%) ACC (%) BER (%) AUC (%)
medianCC MAV SpEn 89.66 89.47 69.80 89.51 10.44 96.17
MAV Count2 aveCC 93.10 84.97 62.70 86.71 10.96 96.08
MAV SpEn aveCC 88.15 89.59 69.68 89.28 11.13 96.05
medianCC MAV Count2 92.67 85.32 63.14 86.89 11.00 96.03
medianCC Count2 aveCC 94.18 87.43 67.02 88.87 9.20 95.92
Count2 aveCC FM 92.46 87.49 66.72 88.55 10.03 95.90
medianCC Count2 FM 94.18 87.31 66.82 88.78 9.25 95.78
TCSC medianCC SpEn 89.22 85.79 63.01 86.52 12.49 95.78
VFleak Count2 aveCC 83.84 92.22 74.52 90.43 11.97 95.77
medianCC Count2 CM 86.64 91.52 73.49 90.48 10.92 95.70

Table 2.7: Evaluation performance on VFDB with CUDB and MITDB as the training set.

feature 1 feature 2 feature 3 SE (%) SP (%) PP (%) ACC (%) BER (%) AUC (%)
VFleak medianCC MEA 97.47 90.63 69.27 91.85 5.95 98.46
VFleak medianCC TCI 97.47 90.42 68.80 91.67 6.06 98.40
VFleak medianCC Count2 96.88 90.12 68.01 91.33 6.50 98.34
VFleak MEA aveCC 97.18 90.12 68.08 91.38 6.35 98.31
VFleak aveCC TCI 97.18 89.70 67.16 91.03 6.56 98.28
VFleak Count2 MEA 95.62 92.65 73.83 93.18 5.86 98.23
A2 Count2 MEA 92.60 93.01 74.18 92.94 7.19 98.22
VFleak Count2 aveCC 95.91 90.35 68.31 91.34 6.87 98.16
VFleak medianCC SpEn 97.47 84.99 58.47 87.21 8.77 98.10
VFleak Count2 TCI 95.33 92.67 73.83 93.15 6.00 98.09
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2.6 Conclusion

This chapter has proposed two new simple, effective, personalized temporal features named

aveCC and medianCC for VA detection. These two features have been selected and verified

among 11 newly-extracted features and 15 previously-validated existing features. Combined

with one or two other features, aveCC or medianCC works well with SVM classifiers under

both the record-based data division and the database-based data division of well-known

public ECG databases.

Through 50-times record-based data division, the effectiveness of our proposed features

have been validated by the statistic results on the test sets. The top two two-feature com-

binations are VFleak with aveCC, and VFleak with medianCC. The top two three-feature

combinations are respectively aveCC and medianCC combined with VFleak and MEA.

For database-based data division, the three-feature combination of medianCC, MAV, and

SpEn ranks atop when testing on CUDB with VFDB and MITDB as the training set. And

the combination of VFleak, medianCC, and MEA ranks first when testing on VFDB with

CUDB and MITDB as the training set.

In conclusion, these simple two or three features involving aveCC or medianCC achieve

the best classification performances using SVMs, compared to other feature combinations.

These features, especially aveCC and medianCC, have explicit physical meanings and low

implementation complexity. The top two-feature and three-feature combinations enable

accurate, low complexity, fast and personalized VA detection, leading to potential usage in

real time ECG detection applications to improve the prediction of sudden cardiac death.
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Chapter 3

A Novel Normal and Abnormal

Heartbeat Classification Method for a

Resource-Saving Cloud based

Long-Term ECG Monitoring System

Continuous and noncontinuous remote healthcare monitoring of patients are enabled by the

blooming Internet of Things (IoT) technology. However, long-term ECG systems are subject

to several practical limitations: battery power restriction, network congestion and heavily-

redundant ECG data. To overcome these problems, a novel simple normal and abnormal

heartbeat classification algorithm is proposed for CLT-ECG monitoring systems, to decrease

the redundant normal heartbeats in data transmission. The proposed algorithm explores

two types of variations, intra-beat variation and inter-beat variation, namely, the waveform

change indicator (WCI) and the modified RR interval ratio (modRRIR), to predict a heart-

beat change. WCI indicates a waveform change in P/QRS/T segments, and is calculated

by applying OC-SVMs on tens of personal normal heartbeats. modRRIR characterizes the
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successive heartbeat interval variation, and is obtained from the ratio of consecutive three

heartbeats, other than the absolute value of RR intervals. WCI and modRRIR are firstly

tuned separately, and then combined to separate normal heartbeats from abnormal ones. The

proposed method is evaluated using the publicly available MITDB database and achieves an

overall accuracy of 78.4%, sensitivity of 76.5%, specificity of 93.2%, and positive predictive

value of 98.9%, which outperforms the results in the literature. Furthermore, the strategy

is also validated using the data collected from the ECG platform Heartcarer built in our

research group.

3.1 Introduction

ECG records the electrical impulses from myocardium and is of great value in discovering

cardiac arrhythmias which are caused by different heart disorders, impacting people’s health

and life. Some mild arrhythmias have several obvious symptoms such as lightheadedness

and shortness of breath [5]. A few serious arrhythmias may degrade, and even lead to stroke

or sudden cardiac death. For example, VF is life-threatening if emergent therapy is not

conducted within a few minutes [53]. Early detection and timely therapy feedbacks for ar-

rhythmias are critical to improving patients’ health or even saving lives. However, not all

arrhythmias can be confirmed in a routine physical exam in a cardiac health center or a

hospital by traditional snapshot ECG testing, as they may occur infrequently or asymp-

tomatic [6]. Therefore, long-term ECG monitoring of patients’ heart status is extremely

useful to arrhythmia detection and diagnosis.

The anomaly-trigged ECG data transmission part in the proposed system scheme is

critical to the resource-saving objective, and is the research focus of this chapter. The

proposed system realizes resource saving by discarding redundant normal rhythms whereas

an acceptable abnormal detection rate should be guaranteed. A lot of research efforts have
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been dedicated to developing normal and abnormal classification methods. The available

methods can be categorized into two types: syntactic methods and the machine learning

based methods.

Syntactic methods identify arrhythmia heartbeats by applying a set of clinical or practically-

verified rules to certain extracted features [54–58]. The advantage of this method is that

the features extracted usually have explicit physical meanings. In [57], the heart block and

ventricular premature complexes are detected when the PR interval and the QRS duration

exceed certain thresholds, respectively. In [58], a multistage cardiac event change detection

algorithm is proposed, where abnormal beats are discriminated by respectively comparing

each feature with its corresponding pre-set public threshold. Henceforth, the accuracy of

this method is heavily influenced by the extracted feature types and accuracy, which also

explains that advanced signal processing techniques are usually required in the syntactic

methods [59–61]. Furthermore, the relationship among different features is ignored in the

syntactic methods.

Rather than syntactic methods, machine learning based methods do not deeply rely on

precise features of the heartbeat. By feeding a set of features into a machine learning scheme,

the machine learning algorithms will yield a decision, which automatically takes into consid-

eration the relationship among different features. The machine learning methods have been

widely used in the classification of different types of arrhythmias [62–66], However, most ma-

chine learning algorithms used in the literature are supervised learning, and a large amount of

pre-labeled ECG heartbeats including normal and abnormal heartbeats are required to train

the classification model, which is not practical in real world applications. Most heartbeats in

the ECG data stream are usually normal heartbeats. To obtain labeled abnormal heartbeats

for training is not easy even if experts available for labeling. Deep learning, another group of

machine learning methods, recently becomes more popular in ECG heartbeat classification,

such as deep long short-term memory networks [67], convolutional neural networks [68] and
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general regression neural network [69]. However, high computing complexity, requirement of

labeled data for training and lack of physical network interpretation limit the usage of deep

learning methods in the proposed resource-saving ECG monitoring system scheme.

Features extracted from ECG data are indispensable to both syntactic methods and

machine learning based methods. Many sets of features used in heartbeat classification are

studied in different domains [62,70], such as time domain, morphological domain, frequency

domain, et al. Temporal and morphological features are intuitively observed and explicitly

analyzed. Thereinto, the whole waveform of a single heartbeat as a set of features keeps

all the information and is studied in previous works [6, 67]. It is noted that P/QRS/T

segments correspond to depolarization of the atrium, the depolarization of the ventricle and

the repolarization of the ventricle, respectively. The waveform variation of each of these

three segments indicates different types of heart anomalies. In [6], an unknown heartbeat is

predicted to be a normal or abnormal using the dynamic time warping method to measure

the waveform difference between this heartbeat and a pre-selected beat template. In [67],

without elaborate preprocessing, every sampling point of one whole heartbeat is treated as

a feature, and the classification is realized by exploiting a deep learning architecture that

takes the whole ECG beat as the input. However, due to the intrinsic amplitude difference, a

significant variation of the P/T segments might be counteracted and neglected due to a slight

variation of the QRS-segment when P/R/T segments work together within one heartbeat as

an entity.

In this chapter, a novel anomaly detection algorithm is presented only using several

normal heartbeats for training, aimed for the proposed resource-saving CLT-ECG monitor-

ing system where labeled patient-specific abnormal training heartbeats are not available.

As mentioned above, any change among the P/QRS/T segments may indicate a potential

abnormal heartbeat, as well as the heartbeat interval variation. Thus, this algorithm ex-

plores two types of variations to characterize a heartbeat change, a morphological variation
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identification named WCI, and an interval-based feature named modRRIR. WCI is an intra-

beat variation detection, which reflects the morphology change of the P/QRS/T segments

other than one whole heartbeat using OC-SVMs. modRRIR, based on RR interval ratio

(RRIR) [58], is an inter-beat feature, characterizing the successive heartbeat interval varia-

tion. An abnormal heartbeat is detected by combining two predictions separately from WCI

and modRRIR. The contributions of the chapter are summarized as follows.

• WCI for P/QRS/T segments of one heartbeat, is explored. The waveform change of

any of these three segments refers to a certain type of heartbeat anomalies. Thus, it

is expected that exploiting the WCI of the three segments yields a better performance

than that of exploiting the whole heartbeat.

• The feature modRRIR is proposed as a complementary feature to WCI. modRRIR can

detect the successive abnormal beats which cannot be handled by RRIR.

• A combination scheme is designed to achieve a high detection rate of abnormal heart-

beats and an as high as possible resource-saving rate simultaneously.

The rest of the chapter is organized as follows. Section 3.2 presents the architecture of the

proposed CLT-ECG monitoring system. Section 3.3 introduces the MITDB database used

in the simulation. Section 3.4 proposes a novel arrhythmia detection strategy. Section 3.5

validates the effectiveness of the proposed arrhythmia detection strategy on both the MITDB

database and the data from our Heartcarer platform. Finally, Section 3.6 concludes this

chapter.

3.2 Objective

The resource-saving objective is realized by transmitting almost all abnormal heartbeats

while limiting the transmission of normal beats as much as possible, considering an acceptable



43

computational complexity. It is the key concern in this chapter and corresponds to the

second stage of the abnormal heartbeat detection during the anomaly-trigged ECG data

transmission. The second stage is essential to discriminate the normal and the abnormal

beats. To achieve this objective, the following procedure is performed: 1) the ECG data

are pre-filtered to remove noise; 2) the ECG beat is detected and segmented; 3) algorithms

are explored to classify each beat as normal or abnormal. The objective is to keep as many

abnormal heartbeats as possible and at the same time to discard as many normal beats as

possible.

Pertaining to the performance regarding the resource-saving rate of the CLT-ECG mon-

itoring system is the classification algorithm adopted to discriminate the normal beats and

the abnormal beats. It is desirable that such a classification algorithm achieves a high de-

tection rate for the abnormal and normal beats simultaneously, which is the research scope

of this chapter.

3.3 Data Preparation

3.3.1 Database Information

The MITDB database is one of the most commonly-used public ECG databases, as mentioned

in the previous chapter. This database is composed of 48 records from different patients

and each record contains 30-minute 2-channel ECG data with a sampling rate of 360 Hz.

Following the record partition method proposed by De Chazal et al. [71], these records are

grouped into two sets, DS1 and DS2, respectively, usually for training a classification mode

and validating/testing the classification performance of this trained mode. In this chapter,

records in the set DS2 are used to verify our proposed method.
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3.3.2 Data Preprocessing

The ECG data are inevitably contaminated by external noises [46] and the signal of interest

falls in a specific frequency range [72]. Thus, to better reflect the dynamics of the heart, the

raw ECG data are preprocessed to eliminate the influence of the external noise, which further

facilitates the feature extraction of each heartbeat thereafter. To this end, the database

downloaded from the online source [43] is preprocessed in the following way: 1) the baseline

wander is removed using a high-pass filter with the 1 Hz cut-off frequency; 2) the high-

frequency noise is eliminated using a second-order Butterworth low-pass filter with the cut-off

frequency at 40 Hz.

3.3.3 Beat Types

In the MITDB database, each ECG beat is annotated manually by experts as one of the 16

heartbeat types. In the remote cloud based ECG monitoring device, it is desirable to transmit

the ECG abnormal beats. According to [73], heartbeat types in the binary classification

scene, namely, normal and abnormal, are listed in Table 3.1.

Table 3.1: Heartbeat type mapping from the MITDB database
to the binary classification scene.

Normal vs. Abnormal ECG Heartbeat Types

Normal
Normal Beat (NOR), Left Bundle Branch Block (LBBB),

Right Bundle Branch Block (RBBB), Atrial Escape Beat (AE), Nodal (Junctional) Escape Beat (NE).

Abnormal

Atrial Premature Contraction (APC), Premature Ventricular Contraction (PVC),

Paced Beat (PACE), Aberrated Atrial Premature Beat (AP), Ventricular Flutter Wave (VF),

Fusion of Ventricular and Normal Beat (VFN), Blocked Atrial Premature Beat (BAP),

Fusion of Paced and Normal Beat (FPN),

Ventricular Escape Beat (VE), Nodal (Junctional) Premature Beat (NP),

Unclassificable Beat (UN).
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3.3.4 Performance Metrics

Performance evaluation of a classification algorithm is usually realized by comparing the pre-

dicted labels with the ground truth labels (given in the database) on the test set. Commonly-

used statistical indices that characterize the classification performance include SE, SP, ACC,

PP, etc. In the proposed resource-saving cloud based ECG monitoring system, normal heart-

beats are treated as positive instances while abnormal heartbeats as negative instances, as

shown in Table 3.2. SE and SP respectively represent the detection rate of normal heartbeats

and abnormal heartbeats. Conventionally, SE and SP are more or less equally important,

and both contribute to the final classification accuracy resulting in the tradeoff between SE

and SP. In the resource-saving application scenario, resource-saving rate corresponds to the

detection rate of normal heartbeats, namely, the value of SE. Different from the conven-

tional thinking, we want to guarantee a very high abnormal heartbeat detection rate (i.e.,

SP), while identifying as many normal heartbeats possible (proportional to SE). In other

words, we want to make sure that abnormal beats are always transmitted and stored to the

cloud server, even if some normal beats are also inevitably transmitted due to misclassifi-

cation as abnormal beats. Slightly lower SE simply means the percentage of normal ECG

data exempted from transmission and storage are not as much, which is acceptable in the

resource-saving CLT-ECG application. Even a SE of 50%, i.e., above a resource-saving rate

of 50%, for 24 hours’s monitoring, ensures an obvious resource saving in the whole ECG

system.

Table 3.2: Statistical indices.

Detected Normal Detected Abnormal

Annotated Normal TP FN

Annotated Abnormal FP TN
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3.4 A Novel Arrhythmia Classification Strategy

A novel arrhythmia detection strategy for the CLT-ECG application is proposed in this sec-

tion. The strategy aims to achieve an acceptable resource-saving rate while keeping heart-

beats of interest and the potentially useful ECG signal as much as possible. As mentioned

in [6], advanced signal processing techniques are beneficial to the classification performance

but a high computation complexity will be introduced, which might not be suitable at the

long-term ECG application side. Furthermore, some undiscovered ECG signal information

is unintentionally removed by complicated preprocessing, before the high-resolution heart

disease analysis is conducted at the side of the diagnostic cloud server. For example, in [58]

the ECG beat will be discarded if it is evaluated as having a bad quality using the signal

quality assessment method. In the proposed method, all the ECG beats are processed with

the intention that the so-call bad ECG beats may provide additional information for the di-

agnosis. Furthermore, our proposed strategy realizes the normal and abnormal classification

with a simple unsupervised method OC-SVMs, only using lightly-filtered ECG waveforms

without advanced signal processing techniques and with explicit physical meanings.

The proposed strategy is elaborated in three subsections. The first part introduces the

OC-SVM algorithm; the second part explains WCI obtained from OC-SVMs which indicates

any change in one heartbeat in terms of separate P-segment, QRS-segment and/or T-segment

using OC-SVMs, and modRRIR derived from the RR-interval as an improvement feature

based on the RRIR feature proposed in [58]. The last part illustrates in detail the decision-

making procedure.

3.4.1 One Class Support Vector Machines

The OC-SVM algorithm is a commonly-used unsupervised machine learning algorithm, which

can be used to predict an unseen heartbeat to be a normal or abnormal heartbeat based on a
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learning model trained using a small number of normal heartbeats. The OC-SVMs algorithm

is essentially constructed to be a two-class algorithm according to Scholkopf’s methodology.

Let {x1,x2, · · · ,xN} denote the training set of N normal heartbeats, then the training of

the OC-SVM model is realized as follows

min
w,si,ρ

1

2
‖w‖2 − ρ+

1

νN

N
∑

i=1

si

subject to (wTφ(xi)) ≥ ρ− si,

si ≥ 0 for i = 1, · · · , N,

(3.1)

where xi ∈ R
M×1 is one training sample with M features; w ∈ R

M×1 is the weighting vector;

φ(xi) ∈ R
M×1 is a transformation operator; N is the number of training samples; si represents

the slack variable of the ith training sample with respect to the separating boundaries; ν is

the regularization parameter which represents the upper bound of the fraction of outliers

and the lower bound of the number of support vectors, and ρ is a bias item.

Given any testing feature vector x̂, the decision value

WCI d = wTφ(x̂)− ρ, d ∈ {P, R, T}. (3.2)

It is worth noting that the training size N and the parameter ν are important factors

that impact the classification performance, which is investigated in the simulation part.

3.4.2 Wave Change Indicator and Modified RR Interval Ratio

The intra-beat indicator WCI, and the inter-beat feature modRRIR are extracted below.

WCI reflects the heartbeat change in terms of separate P-segment, QRS-segment and T-

segment by exploiting the OC-SVM classifier. modRRIR is a modified feature based on

the feature RRIR proposed in [58], which indicates the prematurity of the heartbeat [74].
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Before performing feature extraction, the R-peak in each heartbeat needs to be localized in

advance. The P & T QRS detector with high accuracy is available in the literature [48].

Since the QRS detection is not the focus of this chapter, in the simulation part, the R-

peaks annotated in the MITDB database are used for the sake of comparison, while in the

experimental validation using our Heartcarer ECG platform, the R-peaks are extracted using

the P & T QRS detector.

1) Waveform Change Indicator

Inspired by [6, 67], each of the sampling points that compose an ECG heartbeat wave-

form is treated as one feature, contributing to distinguishing a normal beat from a potential

abnormal beat. Generally, a single heartbeat is composed of three main segments, namely,

P-segment, QRS-segment and T-segment. Morphological changes of different segments may

provide an indication for different anomaly types. For example, the disappearance or ab-

normality of the P-segment is associated with atrial fibrillation (AF). However, compared

with the QRS-segment with high amplitude and large energy, P-segment and T-segment is

easily ignored in the presence of a slight variation of the QRS-segment during arrhythmia

detection. Thus, the shape change indices of the three segments, are separately calculated

according to Eq. (3.2), namely, decision values WCI P, WCI R and WCI T, and are then

combined to obtain WCI of the current heartbeat. The procedures of extracting WCI is

introduced as follows.

Before proceeding, the method to divide each heartbeat into a P-segment, a QRS-segment

and a T-segment, is firstly illustrated in Fig. 3.1. According to general characteristics of ECG

heartbeat waveforms, a group of typical window lengths is used to segment each ECG heart-

beat. Given the detected R-peak position, a complete heartbeat is confirmed surrounding

its R-peak, ranging from 220 ms before the R-peak to 500 ms after the R-peak. Each beat

is divided as three segments, P-segment, QRS-segment and T-segment. When the QRS-

segment of 160 ms is acquired from 53 ms before the R-peak to 107 ms after the R-peak, the
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P-segment and the T-segment are determined accordingly. This way to segment heartbeats

is just an example to illustrate the process. Such a segmentation is applicable to situations

with a faster or a slower heart rate, as well as a different group of window lengths, as relative

changes of consecutive heartbeats are generally evaluated in the proposed algorithm.
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Figure 3.1: ECG beat segmentation (Record 100 in the MITDB database).

After beat segmentation, a prediction making is conducted by exploring WCI for each

heartbeat. The WCI feature is obtained through the work flow shown in Fig. 3.2. At the

beginning, pre-selected N normal beats are used to train OC-SVM classification models

for P-segments, R-segments and T-segments respectively, i.e., ocsvm P, ocsvm QRS, and

ocsvm T. An unknown new heartbeat can be predicted to be normal or abnormal based on

the three pre-trained classifier mode outputs, i.e., decision values WCI P, WCI QRS, and

WCI T separately for the P/QRS/T segments. This heartbeat is evaluated as an abnormal

beat if any of the three WCI values indicates a potential abnormality. The threshold θ1 for

WCI values of these three segments can be consistent or different, which is appropriately

tuned so that a better SP can be achieved according to the application demand. In detail,

if any output of these three OC-SVM classifiers is larger than θ1, this unknown heartbeat is
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predicted to be ‘Normal’ and denoted by WCI of 0; otherwise ’Abnormal’ with WCI of 1.

R-segment

P-segment

T-segment

ocsvm_P

ocsvm_QRS

ocsvm_T

Train?

Train?

Train?

One-lead

ECG

stream

Beat

detection

Test

WCI_P

WCI_R

WCI_T

+ WCI

Y

Y

Y

N

N

N

Test

Test

2
q

 

  

 

  

 

  

Figure 3.2: Waveform change indicator.

2) Modified RR Interval Ratio (modRRIR)

RR interval is an important feature that reflects the heartbeat variability, specifically,

atrial premature contraction. Thus, it is in some sense a good indicator to predict a heartbeat

to be normal or abnormal. A RR-interval based feature, RRIR, is presented in [58] to detect

real-time changes of cardiac events. RRIR represents the ratio calculated by two consecutive

RR interval RRIi−1 and RRIi, denoted as min{RRIi−1, RRIi}/max{RRIi−1, RRIi}. If

RRIR < θ2, the current heartbeat is predicted to be abnormal; otherwise, it is predicted to

be normal. RRIR works fine when a single abnormal heartbeat occurs among a duration of

normal heartbeats, e.g., for abnormal heartbeats in Record 100.

However, when abnormal heartbeats occur continuously, RRIR fails to detect the cardiac

event changes. For example, one waveform segment of continuous abnormal heartbeats (AF

beats) is shown in Fig. 3.3, and the correspondingly calculated RRIR and modRRIR are

displayed in the rectangular box of Fig. 3.4. It is noted that the most abnormal heartbeats

in Fig. 3.3 can not be identified by RRIR values, as these abnormal RR intervals (RRIs) do

not change too much although these RRIs are extremely small.

To overcome this problem, RRIR is modified in this chapter as follows: if the ith heartbeat
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is classified as an abnormal beat, RRIi = RRIi−1, where RRIi and RRIi−1 represent the i
th

and (i− 1)th RR intervals, respectively. Table 3.4 presents the arrhythmia detection results

on Record 209, which shows the superiority of modRRIR compared with RRIR.
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Figure 3.3: Waveform of the segment corresponding to the rectangular box presented in
Fig. 3.4.
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Figure 3.4: Performance comparison between modRRIR and RRIR on Record 209, θ2 = 0.9.



52

Table 3.3: Arrhythmia detection performance of Record 209, θ2 = 0.9.

ACC SE SP PP

RRIR 80.7 86.5 45.1 90.6

modRRIR 92.3 91.3 98.6 99.7

A prediction is made based on modRRIR for an unknown heartbeat as normal or ab-

normal when compared with the threshold θ2. The value of θ2 for modRRIR is decided

according to the final classification performance, complementary to the prediction WCI.

3.4.3 Decision Making Algorithm

With WCI and modRRIR extracted above, an unknown heartbeat is finally predicted to be

normal or abnormal by combining the two predictions conducted using WCI and modRRIR,

respectively. One beat is labeled as abnormal if any of these two pre-decisions is identified

as abnormal. The details of this arrhythmia detection strategy are shown in Algorithm 2.

3.5 Simulation and Experiment

This section verifies the proposed novel binary classification strategy using the MITDB

database. Firstly, the training length N and the parameter ν for initializing the OC-SVM

mode are analyzed and determined thereafter. Then, the classification performance of the

proposed strategy is investigated.

3.5.1 Determination of the Training Size N and the Parameter ν

Before the OC-SVM algorithm is applied to the heartbeat to extract the features, the pa-

rameter ν and the training size N need to be determined in advance. In this part, we study

the impact of the training size N and the parameter ν on the overall heartbeat classification
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Algorithm 2 Heartbeat Classification: Normal vs. Abnormal

Input

signal - raw ECG data stream;

θ1 - threshold value for WCI;

θ2 - threshold value for modRRIR;

N - training size;

I - the total number heartbeats in one record;

M - number of sampling points in one segmented heartbeat;

ν - one OC-SVM parameter.

Output

idxNormal - the indices of detected abnormal heartbeats.

1: Filter the raw ECG data signal as mentioned in Subsection 3.3.2.
2: Identify R-peaks by the P & T QRS-complex algorithm, denoted as

R = {R1, R2, . . . , Ri, . . . , RI}, i = 1, 2, · · · , I.

3: Segment the lightly-filtered signal as shown in Fig. 3.1, to obtain a beat array with
aligning R-peaks as X = {xi|xi ∈ R

M×1, i = 1, 2, · · · , I}, X ∈ R
M×I .

4: Train classification models separately for P-segments, QRS-segments and T-segments for
the pre-selected N normal heartbeats using the patient-specific training subset, i.e.,

ocsvm P = ocsvm train(X(1 : P, 1 : N))

ocsvm QRS = ocsvm train(X((P + 1) : T, 1 : N))

ocsvm T = ocsvm train(X((T + 1) : M, 1 : N))

where P and T represent the end points of the P-segment and the QRS-segment for one
heartbeat, respectively.

5: i := N + 1
6: while i ≤ I do
7: The RR interval RRIi = Ri − Ri−1

8: if i > N + 2 then
9: modRRIRi = min(RRIi, RRIi−1)/max(RRIi, RRIi−1),
10: end if
11: if RRIRi > θ2 then
12: idxNormal ← idxNormal

⋃

i
13: RRIi = RRIi−1

14: end if
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15: Calculate decision values separately for different segments of Beat i

WCI P = ocsvm predict(X(1 : P, i), ocsvm P )

WCI R = ocsvm predict(X((P + 1) : T, i), ocsvm QRS)

WCI T = ocsvm predict(X((T + 1) : M, i), ocsvm T )

16: if WCI P > θ1 || WCI R > θ1 || WCI T > θ1 then
17: idxNormal ← idxNormal

⋃

i
18: end if
19: i = i+ 1
20: end while
21: Return idxNormal.

performance, and then choose appropriate values for the following implementation. The

overall performance is calculated with the aggregated classification counts of each record.

Records in DS2 are selected following the record division scheme proposed in [71].

Fig. 3.5 shows the impact of training size N on the heartbeat classification performance,

given a fixed parameter ν = 0.02, when the OC-SVM algorithm is applied. It can be

observed that ACC and SE decrease slightly along with the training size ranging from 10

to 90 beats, and then stabilize at around 78% and 76%, respectively. Meanwhile, SP and

PP increase a little bit as the training size increases. Similar trend relating the training

size and the classification performance can also be observed when the parameter ν varies,

which indicates that the classification performance is not that sensitive when the training size

changes. Fig. 3.6 shows how the parameter ν affects the classification performance when the

training size N = 20. It is noted that the parameter ν in the OC-SVM algorithm represents

the upper bound for the outlier in the training set. Intuitively, When the parameter ν

increases, more normal heartbeats are treated as outliers in the training process. On the

contrary, more normal beats can not be identified in the test stage, leading to a decrease of

SE and an indirect increase of SP, as demonstrated in Fig. 3.6.

It is noted from Fig. 3.5 and Fig. 3.6 that PP is always high, and the influence of the

training size N and the parameter ν are negligible, which is an advantage of applying the

proposed strategy. Particularly, PP of close to 100% and high SP mean few abnormal beats
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are mistakenly detected as normal ones. Based on the above analysis, the training size N and

the parameter ν are chosen as 20 and 0.02, respectively, for the following implementation.
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Figure 3.5: Overall performance vs. training size on DS2 (ν = 0.02, θ1 = 0).
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Figure 3.6: Overall performance vs. ν on DS2 (N = 20, θ1 = 0).

3.5.2 Performance Analysis Using the MITDB Database

After the training size N and the parameter ν are determined, it is now ready to apply

the proposed strategy on the MITDB database. In this part, the heartbeat classification
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performance is presented in detail, and the comparison with the results in the literature is

also conducted.

Table 3.4 presents the heartbeat classification results, record by record, by exploiting

the feature WCI, the feature modRRIR and both of the two features, respectively. It can

be observed that SP by exploiting both features outperforms that of exploiting one of the

two features, indicating that a high abnormal detection rate is achieved. The procedure

is as follows: after obtaining the classification results by exploiting the feature WCI, an

appropriate threshold is chosen for the modRRIR such that a comparable SE is obtained

compared to that of using WCI. Since the two features characterize the heartbeat in different

aspects, an appropriate combination of the abnormal beats yields a high abnormal beat

detection rate. It is also worth noting that most of the records have a very high SP above

90% as well as a tiptop PP value, which is consistent with the expectation in the resource-

saving CLT-ECG application. In addition, a few records have low SP values because of their

own specialities. For example, in Record 103, there are only two abnormal beats, so a low

SP doesn’t matter too much. And Record 102 has no abnormal beats so its SP is denoted

as ‘-’.
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Table 3.4: Heartbeat classification performance for each record
(ν = 0.02, N = 20, θ1 = −0.025, θ2 = 0.68).

Record Normal Abnormal
WCI modRRIR Combined

ACC SE SP PP ACC SE SP PP ACC SE SP PP

100 2237 34 98.6 99.9 9.10 98.7 97.8 98.9 26.5 98.9 98.3 99.3 30.3 99

103 2080 2 99.1 99.2 0 99.9 98.9 99 0 99.9 98.7 98.8 0 99.9

105 2524 46 75.5 75.2 93.3 99.8 95.5 95.9 71.7 99.5 74.1 73.6 100 100

111 2121 1 60 60 100 100 98.6 98.6 0 100 59.4 59.3 100 100

113 1787 6 99.9 99.9 100 100 97.7 97.7 100 100 98.3 98.2 100 100

117 1532 1 54.4 54.4 100 100 89.9 89.9 100 100 45.1 45.1 100 100

121 1859 2 94.2 94.2 50 99.9 96.5 96.5 50 99.9 91.4 91.5 50 99.9

123 1513 3 99.7 99.7 100 100 95.8 95.8 100 100 96.2 96.2 100 100

200 1742 857 94.1 93 96.4 98.1 52 68.6 18.2 63 74.9 64.2 96.5 97.4

202 2059 75 93.5 93.9 82.7 99.3 58.2 56.7 97.3 99.8 55.6 53.9 100 100

210 2421 227 98.6 98.6 98.7 99.9 85.8 88.9 52 95.2 89.4 88.5 98.7 99.9

212 2746 0 63.9 63.9 - 100 98.3 98.3 - 100 62.9 62.9 - 100

213 2639 610 95.2 99.1 78.4 95.2 80.1 97 7 81.9 93.3 96.5 79.8 95.4

214 2001 259 98.5 98.6 97.7 99.7 87.2 85.9 97.3 99.6 86.9 85.2 100 100

219 2080 205 98.9 99.1 96.6 99.7 86.7 88.1 72.2 97 88.6 87.8 96.6 99.6

221 2029 396 99.8 99.8 100 100 18.5 21.2 4.50 53.3 34.4 21.5 100 100

222 2272 209 47.9 43.8 92.8 98.5 72.9 72.1 82.3 97.8 46.3 41.7 95.7 99

228 1686 365 89.2 87 99.2 99.8 73.7 78.6 50.7 88 75.6 70.5 99.2 99.7

231 1566 5 99.6 99.7 80 99.9 98.4 98.5 80 99.9 98.8 98.8 80 99.9

232 397 1381 85.5 80.6 86.8 62.6 2.90 1.50 3.30 0.400 69 0.300 87.8 0.600

233 2229 848 99.2 99.2 99.2 99.7 66.7 88.2 10.3 72.1 90.8 87.6 99.2 99.6

234 2698 53 99.1 99.2 92.5 99.8 94.4 95.6 34 98.7 95.2 95.2 92.5 99.8

Total 44218 5585 88.5 88.1 92.1 98.9 79.0 85.9 24.6 90.0 78.4 76.5 93.2 98.9

Table 3.5 compares the classification results with a few algorithms in the literature under

the same test record subset, according to Table 10 in Luz’s survey paper [75]. It can be seen

from Table 3.5 that compared with the published results, comparable SE with a SP of 93.2%

is achieved. Furthermore, the PP and ACC of the proposed strategy outperform that of the
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published results.

Table 3.5: Performance comparison with the methods in the literature on DS2
(ν = 0.02, N = 20, θ1 = −0.025, θ2 = 0.68).

Method ACC SE SP PP

Ye et al. [76] 75.2 80.2 78.2 -

Yu and Chou [77] 75.2 78.3 79.2 -

Yu and Chen [78] 73.9 81.5 74.2 -

Guler and Obeyli [79] 66.7 69.2 72.1 -

Song et al. [80] 76.3 78.0 83.9 -

Proposed method 78.4 76.5 93.2 98.9

3.5.3 Experimental Study

In this part, the proposed strategy is further studied using the Heartcarer ECG platform

built in our research group. We first introduce the Heartcarer ECG platform and then

present the experimental results.

1) Heartcarer ECG Platform

A CLT-ECG monitoring system, Heartcarer ECG platform, is built to conduct remote

heart monitoring. As shown in Fig. 1.1, it mainly consists of an ECG sensor board, an

Android smartphone, and an ECG cloud server. The ECG sensor board collects the raw

ECG signal, conducts some pre-processing (amplification, filtering, etc.), and then transmits

the signal to the smartphone using Bluetooth low-energy technique. On the smartphone,

the proposed algorithm is exploited to discriminate the abnormal and normal beats, and the

segments containing these detected abnormal beats are uploaded to the cloud server and

stored as the way as shown in Fig. 3.7. To further classify the data stored on the cloud

server into different arrhythmia types, some advanced signal processing techniques can be

applied, which is out of the research scope of this chapter.



59

The ECG sensor board has four electrodes with a sampling rate of fs = 250 Hz and a

resolution of 8 bits. Generally the ECG waveforms of Lead I and Lead II could be obtained,

as shown in Fig. 3.8. To keep a consistent setting with the simulation, the signal from Lead

II is used in the experiment.

Figure 3.7: A snapshot for the Heartcarer website.
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Figure 3.8: Heartcarer ECG waveform records for one subject.

2) Experimental Validation

The experimental data are collected from two volunteering subjects, one healthy person

and the other one with long QT syndrome. The ECG record from the healthy subject

includes 167 normal beats, as shown in Fig. 3.9. WCI and modRRIR are extracted from

each heartbeat, the first 20 beats are fed into the OC-SVM classifier as the training set.

Then the trained model is used to perform classification on the test set. It turns out that a

detection rate of 78.2% is obtained, which is comparable to the simulation performance. The

other ECG record, which is collected from the subject with long QT syndrome, has a total of

149 beats, and these beats are examined carefully one-by-one and annotated as normal and

abnormal within our research group. The waveforms of the non-regular and regular beats

are demonstrated in Fig. 3.10 and Fig. 3.11, respectively. Similarly, the first 20 beats are



61

used as the training set for the OC-SVM classifier, and the remaining beats as test data.

Finally, implementation of Algorithm 2 yields a SE of 99.1%, SP of 100%, PP of 100%, and

ACC of 99.2%. Here possible reasons for a higher SE compared to the simulation results

are: 1) only one type of arrhythmia exists in the subject and 2) the abnormal beats and the

normal beats from this subject differ significantly.

Both of the experiments above show the effectiveness of the proposed algorithm, i.e.,

a large amount of transmission power and cloud server storage can be saved. In practice,

several beats before and after the detected abnormal/non-regular beats are suggested to be

transmitted as reference to conduct further diagnosis. Thus, to keep enough normal/regular

heartbeats as reference, the practical transmission resource-saving rate may be tuned lower.

Even though, such a resource-saving scheme is beneficial for the remote, long-term cloud

based ECG monitoring platform.
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Figure 3.9: ECG data from a healthy subject by Heartcarer.
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Figure 3.10: Regular ECG pattern from a subject with long QT syndrome by Heartcarer.
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Figure 3.11: Irregular ECG pattern from a subject with long QT syndrome by Heartcarer.

3.5.4 Limitation

The limitation of the proposed normal and abnormal classification method is that the per-

sonal training subset, namely N , is required to be labeled with manual assistance. However,

this requirement is as little as possible in this chapter, and is more practical and conve-

nient for the patient himself/herself to implement since most of heartbeats are normal or

regular heartbeats, e.g., sweeping with a finger to confirm several normal heartbeats on the
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smartphone screen. Besides, labeling a small amount of personal training subset might be

performed by a global classifier with good generalization ability.

3.6 Conclusion

This chapter presents a resource-saving CLT-ECG monitoring system structure and then

studies a novel binary ECG arrhythmia detection algorithm that is critical to the resource-

saving performance. WCI, an intra-beat waveform variation indicator, and modRRIR, an

inter-beat feature, are introduced and extracted, respectively. Based on the above two re-

sults, a detailed algorithm to perform classification is presented. The proposed classification

algorithm is evaluated using the MITDB database, and it turns out that a significant im-

provement is achieved in terms of ACC and PP, compared to the results in the literature.

Furthermore, the proposed algorithm is verified on the experimental platform built in our

research group, using the data collected from a healthy subject and a subject with long QT

syndrome.

In the future, the proposed work will be examined and potentially applied in two direc-

tions. One direction is that the proposed patient-specific local classifier can be modified to

realize fully automatic personal normal and abnormal classification, by selecting the high-

confidence local training data using a global classifier; the other direction is that the proposed

local classifier can be used to pre-select the data for the multi-type classification in the cloud

server.
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Chapter 4

A Patient-Specific Single-Lead ECG

Heartbeat Classification

This chapter studies an automatic patient-specific heartbeat classification strategy to dis-

criminate ventricular ectopic beats (VEBs) and supraventricular ectopic beats (SVEBs), two

of the AAMI recommended heartbeat classes. Two sets of features, the intra-beat features

and inter-beat features are extracted. Intra-beat features characterize the distortion of the

waveform within one heartbeat, while inter-beat features reflect the variation between suc-

cessive heartbeats. The effectiveness of the extracted feature set is verified by the simulation

result of the global classifier for VEB detection. A novel fusion strategy consisting of a global

classifier and a local classifier is presented which incorporates the patient-specific informa-

tion and thus can potentially improve the classification performance. The local classifier is

obtained using the high-confidence heartbeats extracted from the first above 5-minute data

of a specific patient, where the high-confidence heartbeats are the heartbeats that are clas-

sified to a certain type by the global classifier with a high probability. The advantage of the

developed strategy is that fully-automatic classification is realized without the intervention

of physicians. Furthermore, simulation results show that comparable or even better classifi-
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cation performance is achieved, which validates the effectiveness of the proposed strategy.

4.1 Introduction

The ECG signal characterizes the underlying dynamics of the heart and contains a wealth

of information, reflecting the overall cardiovascular health condition. ECG signal has been

exploited to automatically detect and identify the cardiac arrhythmias [81] which means

irregular or abnormal dynamics of the heart. Cardiac arrhythmias are usually categorized

into life-threatening arrhythmias and non-life-threatening arrhythmias. The detection of life-

threatening arrhythmias is critical and extensive results with high classification performance

have been achieved [16,23,32,53,82,83]. For the non-life-threatening arrhythmias, they hap-

pen infrequently and need to be captured using long-term ECG monitoring devices, aiming

to provide complementary information to assist the diagnosis for cardiologists. For example,

VEB, one type of non-life-threatening arrhythmias, means that there is a sign of disturbance

in the depolarization process, which indicates a malignant cardia arrhythmia [84]. This

chapter concentrates on designing classification strategies to discriminate VEBs and SVEBs

so that appropriate intervention or therapy can be applied in advance.

The classification of ECG heartbeats generally consists of three stages [25, 75], i.e., pre-

processing, feature extraction and classification. In the preprocessing stage, the signal is

processed to reduce the influence of the noise, to remove the baseline wander and also to

locate the fiducial points. Feature extraction aims to extract the most representative el-

ements that can characterize the ECG heartbeats and is critical to successfully identify

the heartbeats. The features commonly seen in the literature include ECG heartbeat mor-

phological [71, 85] and dynamic features [86, 87], wavelet transform based features [87–89],

frequency based features, projected features [5], etc. The classification part involves de-

signing appropriate classifier to label each heartbeat according to the associated features
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extracted. Classifiers in the literature include SVM [90, 91], linear discriminant [71, 86, 92],

neural networks [68, 69, 89, 93], etc.

A lot of research efforts have been dedicated to investigating the detection and classi-

fication of VEBs and SVEBs. Basically, the classifiers can be separated into global clas-

sifiers [5, 71, 85, 87, 94–98] and patient-specific classifiers [68, 69, 86, 89, 93, 94, 99–103]. A

global classifier is generally trained using the publicly available database without a prior

incorporation of the ECG data of the patient to be monitored. Based on the transformed

morphological and temporal features, the authors in [94] constructed a global classifier ex-

ploiting the self-organizing maps and learning vector quantization algorithms. Considering

the unbalance property of different types of heartbeat arrhythmias, linear discriminant (LD)

classifiers [71] with appropriate weighted likelihood functions are developed for two leads and

classification is obtained by proper fusion of the two leads. Different from the generally used

waveform shape related morphological features, the wavelet transformation and independent

analysis [87] are used to extract the features, and the dimension of the features is further re-

duced and fed into a SVM based classifier exploiting two leads. Noting that the classification

results in [71,87,94] are based on two leads, it is criticized in [97] that attaching two leads is

not practical in some cases and the authors in [97] exploits the synchrosqueezing transform

to derive phase and amplitude intervention of single-lead ECG heartbeats and perform the

SVM-based classification.

Although some of the global classifiers reviewed above achieve good performance, the

results are not consistent for each individual testing record, which might be caused by the

inter-beat variation of the morphologies of ECG waveform. Henceforth, it is expected to

obtain a better and consistent performance if the classifier is adjustable to specific patients.

Recently, various forms of patient-specific classifiers which take into account the specific

characteristic of the patient’s ECG waveform, have been extensively studied. The authors

in [94] proposed a patient-adaptable ECG beat classification algorithm, namely, a mixture
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of experts (MOE) approach, in which a local classifier is constructed exploiting the first

5-minute annotated ECG beats taken from the specific patient and then combined with the

global classifier to generate the classification results. To alleviate the workload of cardiolo-

gists, the authors in [86] first classify a small segment of ECG beats using a global classifier

and then the ECG beats are examined and corrected if necessary to train a local classi-

fier. Similar to [94], classification is performed using the combination of global and local

classifiers. Different from the conventional methods, convolutional neural network based

patient-specific classifiers [68, 104] integrate the feature extraction and classification, which

can automatically learn the features from the input raw ECG beat. Still, a small segment

of manually labeled patient-specific ECG beats should be provided. To fully avoid the in-

tervention of cardiologists, the authors in [99] adopted a multiview approach to obtain the

high-confidence patient-specific ECG beats which are used to train a local classifier. In gen-

eral, the classification schemes that are aware of the patient-specific information yield better

performance than the global classifiers.

This chapter studies the automatic patient-specific VEB and SVEB detection and classi-

fication algorithms. It is worth noting that although features extracted from multilead pro-

vide more comprehensive representations and thus yield better classification performance,

the applicability is restricted due to the requirement to deploy more electrodes on the body.

Inspired by [97], in this chapter, only single-lead ECG data is exploited. Similar to [86],

global and local classifiers are designed to cooperatively classify each heartbeat. However, if

there are VEB or SVEB beats in the first 5-minute ECG data, then the classification result

is decided by the local classifier. On the other hand, if there are no VEB or SVEB beats

in the first 5-minute ECG data, then the global classifier will dominate the classification

results. In summary, the contributions of this chapter are itemized as follows:

• Two sets of features, intra-beat features and inter-beat features, are extracted. Intra-

beat features characterize the distortion within the heartbeat, while inter-beat features
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reflect the variation between successive heartbeats.

• A fully-automatic patient-specific classification strategy is studied. Specifically, the

global classifier is firstly used to annotate the first 500 beats (above 5-minute length

data) of the patient-specific data, and only the ECG beats with high posterior prob-

abilistic estimate is used to train the local classifier. It turns out that the developed

strategy yields better performance than that of the global classifier.

• The developed classification strategy only exploits single-lead ECG data, which is more

practical. Simulation results show that the classification performance is comparable to

that of using two-lead ECG data.

The rest of the chapter is organized as follows. Section 4.2 presents the ECG data informa-

tion. Section 4.3 introduces the feature extraction and the classification model. Section 4.4

evaluates the classification performance and analyzes the results. Section 4.5 concludes this

chapter.

4.2 Data Preparation

4.2.1 Database Information

The proposed algorithms are tested using the MITDB database, one of the most commonly-

used public ECG databases. The database consists of 48 records from different patients with

the exception that records 201 and 202 are from the same patient, and each record contains

30-minute 2-channel ECG data with a sampling rate of 360 Hz. Associated with each record,

there is an annotation file containing the QRS position and the beat class information, which

is verified by at least two cardiologists. Lead information for each record is listed in Table 4.1.
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Table 4.1: Lead information of the records.

Lead A V5 V5 MLII MLII MLII MLII

Lead B V2 MLII V2 V4 V5 V1

Records

101 105 106 107 108

109 111 112 113 115

116 118 119 121 122

102
114

103
124

100 200 201 202 203 205

104 117 123 207 208 209 210 212

213 214 215 217 219

220 221 222 223 228

230 231 232 233 234

Number 2 1 2 1 2 40

The record division schemes proposed by de Chazal et al. [71] is adopted in this chapter

as shown in Table 4.2. These records are grouped into two sets, DS1 and DS2, respectively,

for training a classification model and validating/testing the classification performance of

this trained model. To comply with the ANSI/AAMI EC57: 1998 standard, paced records

102, 104, 107 and 217 are excluded as they display different characteristics from general ECG

records. In addition, the first channel of the selected 44 records is used in this study.

Table 4.2: Database division.

Total beats Records included

D1 51508
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,

124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230.

D2 49803
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,

212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234.
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4.2.2 Data Preprocessing

The ECG signal is affected by artifact signals including baseline wander, power line inter-

ference and high frequency noise as stated in [46] and it is also observed that the signal of

interest falls in a specific frequency range [72]. Thus, to better reflect the dynamics of the

heart, the raw ECG data is preprocessed to eliminate the influence of the external noise,

which further facilitates the feature extraction of each heartbeat thereafter. To this end,

the ECG data is preprocessed following the similar line in [53]: 1) the baseline wander is

removed using a high-pass filter with the 1 Hz cut-off frequency; 2) the high-frequency noise

is eliminated using a second-order Butterworth low-pass filter with the cut-off frequency at

40 Hz.

The ECG data is further segmented into consecutive heartbeats, so that the heartbeat-

based feature extraction and classification can be employed. Various segmentation algorithms

have been developed and great accuracy has been achieved [48,105]. In this chapter, to focus

on the validation of the proposed classification method, the QRS positions in the annotation

files provided in the database are used.

4.2.3 Beat Types

In the MITDB database, the heartbeats are categorized into 15 types. To be consistent with

the AAMI recommendation and ensure a fair comparison with [68, 89, 94], the 15 types are

mapped into 5 classes: N, V (VEB), S (SVEB), F, and Q, which is illustrated in detail in

Table 4.3. Also, the heartbeat numbers of VEBs and SVEBs in the dataset DS1 and DS2

are presented in Table 4.2.
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Table 4.3: Heartbeat class mapping.

AAMI standards Beats in DS1 Beats in DS2 MITDB annotations

N 45825 34355 • Normal beart (N)

• Left bundle branch block beat (L)

• Right bundle branch block beat (R)

• Atrial escape beat (e)

• Nodal (Junctional) escape beat (j)

V (VEB) 4260 2578 • Premature ventricular contraction (V)

• Ventricular escape beat (E)

• Ventricular flutter wave (!)

S (SVEB) 1001 1573 • Atrial premature beat (A)

• Aberrated atrial premature beat (a)

• Non-conducted P-wave (blocked APB) (x)

• Nodal (junctional) premature beat (J)

F 414 292 • Fusion of ventricular and normal beat (F)

Q 8 5 • Fusion of paced and normal beat (f)

• Unclassifiable beat (Q)

4.2.4 Performance Evaluation

There are two different schemes to evaluate the classification algorithms, class-oriented [90,

98] and subject-oriented [71, 86, 87, 89, 93, 96, 97]. In the class-oriented scheme, the training

set and the test set contain heartbeats from the same record, and thus, the information of

a specific-patient is implicitly incorporated in the training stage. The class-oriented scheme

tends to achieve an optimistic performance, however is not practical. The subject-oriented

scheme, i.e. patient-specific scheme, on the other hand, conducts the training and testing

in separate records, preventing the training process from being aware of specific patients’

information, and thus offering a more realistic evaluation of the classifiers. The proposed
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strategy is evaluated and compared with other strategies under the patient-specific scheme.

Regarding the statistical indices to evaluate the classification algorithms, SE, SP, ACC, and

PP, are used. For detailed definitions of SE, SP, ACC, and PP, readers can refer to [53].

4.3 Methodology

After the MITDB database is downloaded and preprocessed, i.e., the ECG signal is filtered

and the ECG heartbeats are segmented, it is ready to extract the features that can charac-

terize each heartbeat, and then conduct classification using the developed classifier.

4.3.1 Feature Extraction

Table 4.4: Features extracted.

Class Features
Intra-beat Features • Amplitude of R, Q, and S peaks

• QRS duration/width
• Area and sample number of the QRS complex
• Complexity parameters (CM) [19]
• Frequency calculation (FreqBin) [106]
• Kurtosis value [107]
• Spectrum parameters [16]

Inter-beat Features • Pre-RR interval
• Post-RR interval
• Ratio of RR interval from consecutive three heart beats [58]
• Ratio of the amplitude from consecutive two R-peaks [58]
• Waveform similarity of two consecutive heartbeat waveforms [58]
• Dynamic time warping (DTW) between consecutive heartbeats

The features extracted in this chapter (as shown in Table 4.4) are categorized into two

types: intra-beat and inter-beat features. Intra-beat features are the features that can be

obtained using a single heartbeat, while the inter-beat features are the features that are

extracted using the current and the neighboring heartbeats. These two types of features are
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illustrated in more detail as follows.

1) Intra-beat features: Intra-beat features reflect the distortion of the ECG signal within

one heartbeat. In this chapter, seven intra-beat features are extracted, and are described as

follows.

The amplitudes of Q, R and S peaks are simply obtained using the fiducial points provided

in the annotation file associated with each record. The QRS duration/width refers to the

number of sampling points between the QRS onset to the QRS offset.

Area of the QRS complex reflects a more comprehensive information and is obtained by

summing up the amplitude of the sampling points between the QRS onset to the QRS offset.

Complexity measure (CM) [19] provides a precise characterization of the order or disorder

of the evolution of the ECG signal, and is obtained by applying the detailed mathematical

expression formulated by Lempel and Ziv to a finite symbol sequence transformed from the

ECG heartbeat.

To obtain the frequency calculation (FreqBin) [106], a 0−1 binary string is firstly obtained

by comparing the ECG data with an appropriately chosen threshold, and then the number of

binary signal transitions between ‘0’ and ‘1’ are counted and divided by the window length,

which yields the normalized transitions for ‘1’s.

Kurtosis value of the ECG signal [107] measures how Gaussian-like the ECG signal ap-

pears to be using its fourth standardized moment, which is obtained by calculating the

relative peakedness of the ECG signal with respect to a Gaussian distribution

Kurt = E(x− µx)
4/σ4 − 3 (4.1)

where E is the mathematical expectation operator, µx and σ are, respectively, the mean and

standard deviation of the ECG signal.

Spectral parameters [16] assess the energy distribution in frequency domain for each

heartbeat, which are obtained by firstly applying a Hamming window to achieve a high res-
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olution and then implementing the FFT transformation. Particularly, spectral parameters

extracted in this chapter consist of three parts: the first spectral moment normalized (de-

noted as FSMN), ratio of the area contained within the band delimited by the origin of the

frequencies, and half the reference frequency (denoted as A1), and ratio of the area contained

in the range 0.7F to 1.4F (denoted as A2). The mathematical expression for these three

parts are presented as follows.

FSMN =
1

F

∑min(20F,100)
0 ai ∗ fi

∑

ai
(4.2)

A1 =
1

F

∑0.5F
0.5 ai ∗ fi
∑20F

0.5 ai
(4.3)

A2 =
1

F

∑1.4F
0.7F ai ∗ fi
∑20F

0.5 ai
(4.4)

where F is the frequency of the component with the greatest amplitude, namely, the peak

frequency, in the range 0.5− 9 Hz; fi is the i
th frequency in the FFT between 0 and 100 Hz;

ai is the corresponding amplitude.

2) Inter-beat features: Inter-beat features characterize the variation of the heartbeat of

interest with its neighboring heartbeats. The pre-RR interval refers to the RR interval be-

tween the current heartbeat and the previous heartbeat, while the post-RR interval examines

the RR interval between the current heartbeat and the successive heartbeat. Ratio of the RR

interval [58] measures the RR interval variation between the pre-RR interval and the post-

RR interval, which involves three heartbeats. Ratio of the R-peaks amplitudes [58] reflects

the amplitude change between the amplitude of the current R-peak and that of the previ-

ous R-peaks. Waveform similarity index (WSI) [58] determines the changes of consecutive
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heartbeats due to the shape variations and is calculated as follows.

Γ =

∑N
1 [xi(k)− µ01]

∑N
1 [xi−1(k)− µ02]

√

∑N
1 [xi(k)− µ01]

√

∑N
1 [xi−1(k)− µ02]

(4.5)

where Γ represents the waveform similarity index; µ01 and µ02 denote the mean values of

consecutive heartbeats, xi and xi−1, respectively. For some ECG signal subject to large

variation of the rhythm, WSI is sensitive to the length of the heartbeat. To overcome

this problem, dynamic time warping (DTW) [6], another morphological feature, which can

effectively compare two heartbeats in different lengths and at the same time alleviates the

requirement to align two heartbeats, is also calculated.

4.3.2 Classifier Model

SVM is a type of effective machine learning based classification algorithms. Henceforth,

SVM has been extensively studied in the academia and widely exploited in the practical

classification problems.

Given the input vector xi ∈ R
M×1, and the corresponding annotated labels yi ∈ {+1,−1}.

A trained model with calculated µ and b, is obtained by (2.6). For any feature vector x̂ with

an unknown label, the corresponding decision value is estimated using the trained SVM

model

f̂ =
N
∑

i=1

µiyiKG(xi, x̂) + b. (4.6)

The above analysis shows that the heartbeat types are determined according to the

distance from the point of interest to the separating boundary or the posterior probabilistic

estimates of the point belonging to a certain type. Thus, it is concluded that SVM based

classifiers are intrinsically binary classifiers.
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The class-conditional densities p(f̂ |y = ±1) between the margins are apparently expo-

nential. A parametric model is directly used to fit the posterior probability P (yi = 1|f̂i) for

the ith sample as

pi = P (yi = 1|x̂i) = P (yi = 1|f̂i) =
1

1 + exp(Af̂i +B)
, (4.7)

where A and B are parameters that maximize the log-likelihood function constructed using

the training data, which is a cross-entropy error function:

max

N
∑

i=1

[tilog(pi) + (1− ti)log(1− pi)], (4.8)

where ti = (yi + 1)/2 is a target probability for the ith sample, and a new training set is

defined as (f̂i, ti).

In this paper, SVM classifiers are used to construct the global and the local classifiers.

The LIBSVM package, one of the most popular SVM toolboxes, is exploited.

4.3.3 Classifying and Fusion of Classifiers

This subsection studies the classification strategy combining a global classifier and a local

classifier. The above developed classifier can be used to predict the heartbeat types. How-

ever, the predicted result is not the final determination of the heartbeat type. The heartbeat

type is determined by a classification strategy which involves the design of a global classifier,

a local classifier and a fusion strategy combining the prediction results of the global and

local classifiers.

The parameters associated with the global classifier is determined by exploiting the gen-

eral public ECG database with heartbeat annotated by experts, which does not incorporate

the patient-specific ECG information. There are two types of local classifiers: local clas-

sifiers with and without the intervention of the experts. For the local classifiers with the
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intervention of experts, firstly the ECG data of the specific patient is classified by experts (or

classified by the global classifier and then examined and corrected if necessary by experts)

and then these data are exploited to train a local classifier. To make it fully-automatic, the

local classifier without the intervention of the experts are formed this way: the ECG data

of the specific patient is classified by the global classifier and only the predicted estimates

with high probability, namely, high-confidence heartbeats are used to train a local classifier.

It is obvious that the latter one is a fully automated local classifier, and thus it can be

incrementally updated easily. In this paper, to facilitate the comparison, the same length of

patient data is used to train a local classifier.

A novel fusion strategy is then proposed to combine more effectively the predicted es-

timates of the global and local classifiers. The principal is as follows: If the first small

fraction of ECG data contains a certain number of VEB and non-VEB heartbeats, then the

constructed local classifier may have a better performance. Otherwise, the local classifier

constructed might not perform well. Thus, the novel strategy is: if the patient-specific train-

ing data contains the arrhythmia of interest to a certain portion, then the local classifier will

decide the final results. Otherwise, the heartbeat type is determined by the global classifier.

The left chart of Fig. 4.1 shows how the local classifier is constructed. As can be seen,

the global classifier is trained using the public database, and then the well-trained global

classifier is used to predict the heartbeat type of a specific patients’ ECG data. Only high-

confidence heartbeats are exploited to train the local classifier. The right side of Fig. 4.1

shows the fusion of the global and local classifiers. The procedure is also illustrated in detail

in Algorithm 3.
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Algorithm 3 Fusion strategy of global classifier (GC) and local classifier (LC).

Input

DS1 - training set;

DS2 - test set;

DS21 - the first 500 heartbeats in DS2;

DS22 - the remained data of DS2 excluding DS21;

Nlc - number of heartbeats in DS21;

I - number of heartbeats in DS22;

θp - the threshold for posterior probability.

Output

output - the fusion prediction of the global model and the local model.

1: Initialization: SVM classification configuration params = [−s0− t2− b1];

2: Train the global classifier:

modelg = svmtrain(yi,xi, params), (xi, yi) ∈ DS1;

3: Pick high-confidence personal training samples:

pj = svmpredict(xj , modelg, params),xj ∈ DS21;

4: if pj > θp with j ∈ {1, 2, · · · , Nlc} then
5: ˆDS21 = {(xj , yj)|pj > θp};
6: modell = svmtrain(yj,xj , params), (xj, yj) ∈ ˆDS21;

7: end if

8: i := 1

9: For any x̂ ∈ DS22,

10: if modell exists then

output = svmpredict(x̂, modell, params);

11: else

output = svmpredict(x̂, modelg, params);

12: end if

13: Return output.
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Figure 4.1: Proposed fusion strategy of the global classier and the local classifier.

4.3.4 Classification Performance Measures

Final assessment of the proposed algorithm is carried out in accordance with the AAMI

recommendations [108]. Two sets of performance measurements are calculated. The per-

formance measures focus on the ability of algorithms to distinguish VEBs from non-VEBs

and SVEBs from non-SVEBs. Thus, two sets of performance measurements are calculated

following the ways in Table V(a-b) of [71].

4.4 Simulation Results

4.4.1 Experiment Setup

As stated in Table 4.2, after four paced records are removed, the MITDB database is divided

into DS1 and DS2, each of which contains 22 records. This data division scheme follows
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prior investigations [86] [99] in order to facilitate the comparison. Data set DS1 is used to

determine the parameters in the classification model, and DS2 is exploited to evaluate the

developed classification model. Meanwhile, since the records in data sets DS1 and DS2 are

not overlapped, the developed method belongs to the patient-specific classification strategy.

To construct a patient-adaptable classifier, the first 500 heartbeats in each record of the

test set is annotated by experts or the global classifier so that the patient-specific information

can be incorporated in the developed classification strategy. If the annotation is made by

the experts, then the fused classification strategy is called experts intervention mode. If the

annotation is made by the developed global classifier, then there is no need to involve the

experts in the procedure, yielding the automatic adaptation mode.

4.4.2 Fixed Global Mode, Automatic Adaptation Mode and Ex-

pert Intervention Mode

Table 4.5 presents the classification accuracy using three classification modes for discrimi-

nating VEBs and SVEBs, respectively. The automatic adaptation mode yields an obvious

performance improvement compared to the fixed global mode, especially for Records 105,

213 and 214. It is observed that in these three records, heartbeats of VEB appear in the

first 500 heartbeats, which indicates that a patient-specific classifier can achieve a higher

performance than a fixed global classifier due to the inevitable inter-beat variation. And

thus, for the records containing VEB in their first 500 heartbeats, the local classifier without

the experts’ intervention dominates the classification results. However, for other records

whose first 500 heartbeats do not contain VEB, the local classifier does not perform well.

Similar phenomenon can also be seen for the classification of SVEB. The above observa-

tion motivates us to adopt novel fusion algorithms that can incorporate appropriately the

patient-specific information.

Table 4.5 also presents the classification performance using the experts intervention mode,
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which serves as a benchmark to evaluate the automatic adaptable mode. It is expected

to see that the automatic adaptable mode yields a performance that falls in between the

global classifier and the experts intervention mode, as shown in Table 4.7. Since more

accurate heartbeat types can be provided in the experts’ intervention mode, the constructed

local classifier can accordingly generate good classification results. However, the experts

intervention mode is not practical for the clinical center, since a large amount of physician’s

effort is needed. Furthermore, the classification results only exploiting single-lead ECG data

in this chapter achieve a comparable or better results than those methods using two-lead

ECG data in [86] [99] [109].

It is worth noting in Table 4.5 that our proposed methods does not yield a good perfor-

mance for SVEB detection. As can be seen in the table, a super low SE for classification

of SVEBs is obtained from the global classifier with an acceptable accuracy of 94.9%. This

directly leads to a low SE value from the fused classifier under automatic adaptation mode,

as the high-confidence local training samples cannot be guaranteed on which our proposed

fusion strategy heavily relies on. However, the expert intervention mode achieves a compa-

rable or even better performance than those of the reference works, i.e., with SVEBs existing

in local personal training set, the trained local classifier works much better than the global

classifier. This means the inter-beat variation has greater impact for SVEB detection than

VEB detection. Both the VEB and SVEB classifiers show that the inter-beat variation can-

not be ignored, which also validates the necessity of developing the proposed patient-specific

classification strategy in this chapter.
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Table 4.5: Classification accuracy of each record of DS22 under fixed global mode,
expert intervention mode and automatic adaptation mode.

Record Total

DS21 (500 beats) DS22 (DS2-DS21) V S

V S V S
GC Auto Expert GC Auto Expert

ACC SE ACC SE ACC SE ACC SE ACC SE ACC SE

100 2271 0 5 1 28 100 100 100 100 100 100 99.9 50 98.4 0 98.7 17.9

103 2082 0 0 0 2 100 - 100 - 100 - 99.8 - 99.9 50 99.9 50

105 2570 15 0 26 0 94.7 42.3 98.8 3.80 99.7 76.9 100 - 99.8 - 99.8 -

111 2122 0 0 1 0 99.3 100 99.9 0 99.3 100 99.8 0 100 - 100 -

113 1793 0 4 0 2 99.6 - 99.8 - 99.6 - 99.8 0 99.8 0 100 100

117 1533 0 0 0 1 99.9 - 99.9 - 99.9 - 99.9 100 99.8 0 99.8 0

121 1861 0 0 1 1 99.9 0 99.9 0 99.9 0 100 - 99.9 100 99.9 100

123 1516 1 0 2 0 100 100 100 100 100 100 97.9 39.3 100 - 100 -

200 2599 144 2 691 28 98 93.8 98 93.7 98.8 97.4 88.1 3.70 98.7 0 98.7 0

202 2134 7 1 12 54 99.2 91.7 99.7 66.7 99.7 66.7 97.8 60 88.1 3.70 96.7 0

210 2648 33 2 162 20 98.4 84.6 98.5 84.6 98.9 88.3 100 - 98.7 25 99.2 10

212 2746 0 0 0 0 100 - 100 - 100 - 99 0 100 - 100 -

213 3249 21 1 199 27 96.7 81.9 95.8 82.4 97.9 80.9 99.9 - 99 0 99 0

214 2260 59 0 199 0 97.4 77.7 97.9 82.2 99.7 97.5 82.7 5.90 99.9 - 99.9 -

219 2285 17 4 47 136 99.1 83 95.6 85.1 99.4 78.7 97.2 - 89.1 55.9 92.4 0

221 2425 95 0 302 0 99.8 99 99.8 99.3 99.8 99.7 83.2 71.8 98.8 - 97.2 -

222 2481 0 0 0 209 99.3 - 99.3 - 99.3 - 99.4 33.3 89.4 0 83.2 71.8

228 2051 113 0 269 3 99 94 99.6 98.4 99.8 98.8 100 - 99.8 0 99.4 33.3

231 1571 2 3 0 0 100 - 100 - 100 - 32.2 14.2 100 - 100 -

232 1778 0 373 0 1008 98.6 - 100 - 98.6 - 99.1 50 33.2 15.5 99.4 99.8

233 3077 134 3 700 4 98 93.5 99.6 99.3 99.6 99.1 97.8 10 99.1 50 99.8 0

234 2751 0 0 3 50 100 100 100 100 100 100 99.1 42.9 97.8 10 97.8 10

Total 49803 641 398 2578 1573 98.8 90.9 99.0 92.6 99.5 95.7 94.9 22.1 95.7 15.8 98.1 74.6

Note: ’-’ means invalid results as there are no VEB or SVEB in DS22; ’0’ means no VEB or SVEB correctly detected although they practically exist in DS22.

4.4.3 Performance Details under Automatic Adaptation Mode

Table 4.6 shows the performance assessment, as recommended by the AAMI standards. The

first 500 beats in DS21 of the test subject are used to train the patient-specific local classifier

and the classification performance is evaluated on the remaining data in DS22 of this subject.

The final performance is obtained from the combination of the global classifier and the local

classifier using the proposed fusion strategy.
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Table 4.6: Classification performance details of each record of DS22.

Record
V (Automatic Mode) S (Expert Intervention Mode)

ACC SE SP PP ACC SE SP PP

100 100 100 100 100 98.7 17.9 100 100

103 100 - 100 - 99.9 50 100 100

105 98.8 3.80 100 100 99.8 - 99.8 0

111 99.9 0 100 - 100 - 100 -

113 99.8 - 99.8 0 100 100 100 100

117 99.9 - 99.9 0 99.8 0 99.9 0

121 99.9 0 100 - 99.9 100 99.9 50

123 100 100 100 100 100 - 100 -

200 98 93.7 100 100 98.7 0 100 -

202 99.7 66.7 99.9 88.9 96.7 0 100 -

210 98.5 84.6 99.6 94.5 99.2 10 100 100

212 100 - 100 - 100 - 100 0

213 95.8 82.4 96.8 66.9 99 0 100 -

214 97.9 82.2 99.9 98.8 99.9 - 99.9 0

219 95.6 85.1 95.9 35.7 92.4 0 100 -

221 99.8 99.3 99.9 99.3 97.2 - 97.2 0

222 99.3 - 99.3 0 83.2 71.8 84.6 35.5

228 99.6 98.4 99.8 99.2 99.4 33.3 99.5 12.5

231 100 - 100 - 100 - 100 -

232 100 - 100 - 99.4 99.8 97.8 99.4

233 99.6 99.3 99.7 99.1 99.8 0 100 -

234 100 100 100 75.0 97.8 10.0 99.8 55.6

Total 99.0 92.8 99.5 92.6 98.1 74.6 99.1 76.9
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4.4.4 Comparison with Other Reference Works

This subsection compares the classification performance of the proposed method with the

related works in the literature. To facilitate the comparison, the ANSI/AAMI standards [108]

are followed, and the classification performance for the types of SVEBs and VEBs which is

our concern in this chapter, is evaluated in terms of ACC, SE, SP and PP. According to the

data division scheme, the comparison is illustrated into two parts.

1) Comparison to the works under the same data division scheme

Table 4.7 presents the comparison results of the proposed methods with the works in the

literature, where Proposed I, Proposed II and Proposed III refer to the fixed global mode,

expert intervention mode and automatic adaptable mode, respectively. It can be observed

that the fixed global mode proposed in this chapter using single lead achieves a better clas-

sification performance than that of Chazal [110] using single lead and Ye [109] exploiting

two leads, which indicates that the features extracted in this chapter can provide a better

discriminating capability of VEBs. However, the fixed global mode does not yield a good

classification performance of SVEBs compared to the literature, which indicates that the

features used do not capture the characteristics of SVEBs. The proposed expert interven-

tion mode, as expected, yields better performance than the fixed global mode due to the

reason that the classification strategy is aware of the patient-specific information. Particu-

larly, the classification performance of the expert intervention mode generates a significant

improvement for the SVEB detection, which shows that the inter-beat variation has a greater

effect on the SVEB detection. That automatic adaptable mode, which does not need the

intervention of physicians, yields a performance that is better than the fixed global mode,

however, worse than the expert intervention mode, which is reasonable.

2) Compared with works using different data division scheme

To facilitate the comparison of different classification strategies, most of the research

works follow the AAMI standards as well as the commonly used data division scheme. How-
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ever, few works, for example, Hu [94] et al., Ince et al. [89] [68], comply with the AAMI

standards but employ different data division scheme. Specifically, Record 105 appears as

a test record in [86] while a training record in [94]. Thus, it is not easy to directly com-

pare their results with that of the proposed method. In the future, the proposed methods

in Hu [94] et al., Ince et al. [89] [68] will be examined using the commonly accepted data

division scheme.

Table 4.7: Performance comparison of the proposed method and the major reference works.

Methods
V S

Leads Mode
ACC SE SP PP ACC SE SP PP

Chazal [86] 97.4 77.7 98.8 81.9 94.6 75.9 95.3 38.5 2 Fixed

Ye [109] 95.7 81.5 96.7 63.1 96.3 60.8 97.7 52.3 2 Fixed

Ye [99] 99.7 97.1 99.9 98.5 99.1 76.5 99.9 99.1 2 Expert intervention

Chazal [86] 99.4 94.3 99.7 96.2 95.9 87.7 96.2 47.0 2 Expert intervention

Ye [99] 99.4 91.8 99.9 98.0 98.3 61.4 99.8 90.7 2 Automatic adaptation

Chazal [110] 97.8 87.6 98.5 80.3 94.4 73.5 95.2 37.0 1 Fixed

Proposed I 98.8 90.9 99.4 90.8 95.6 21.2 98.4 32.8 1 Fixed

Proposed II 99.5 95.7 99.8 96.5 98.1 74.6 99.1 76.9 1 Expert intervention

Proposed III 99.0 92.8 99.5 92.6 95.6 19.8 98.5 32.7 1 Automatic adaptation

4.5 Conclusion

This chapter proposed an automatic patient-adaptable classification strategy to discriminate

VEBs and SVEBs over the MITDB database. Firstly, a group of features consisting of several

public intra-beat features by static measurement, such as the R-peak amplitude and spectral

features, and some inter-beat features by dynamic measurement such as RR-interval, ratio

of RR-interval, ratio of R-peak amplitude and waveform similarity. Dynamic measurement

can better characterize intra-beat changes due to heart conditions or physical states in the
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long-term ECG monitoring. Then, a novel classification strategy combining a global and a

local classifiers is developed, where the global classifier is obtained using the public data and

the local classifier is generated using the high-confidence data of a specific patient which is

determined using the global classifier. Although the performance of the developed classifier

is not as good as the expert intervention mode, it achieves fully-automatic classification, i.e.,

there is no need for the intervention of experts. Simulation results show that the classification

strategy using single lead developed in this chapter for the detection of VEBs achieves

comparable or even better than the results using single lead or two leads in the literature,

due to the high generality of the extracted features and the novel fusion technique. However,

the SVEB detection is not as good as the VEB detection, the possible reason might be: 1)

the features do not capture the characteristic of SVEBs, 2) the inter-beat variation has a

greater impact and 3) the high-confidence data does not have a high quality due to the low

SE of SVEB detection using the global classifier.

In the future, firstly, the developed classification might be improved using multi-view

feature sets for heartbeat classification. Especially for the detection of SVEBs, which is

highly impacted by the inter-beat variation. Secondly, the features that can better capture

the characteristics of the SVEBs need to be pursued so that the global classifier can achieve

an acceptable SE, which will facilitate the design of the fully-automatic classification strategy.

In the end, in some cases where there is no strict real-time performance requirement, the

patient-specific data that has been classified by the global classifier can be used continuously

to improve the developed classification strategy.
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Chapter 5

Conclusions and Future Work

This dissertation concerns a resource-saving CLT-ECG system which consists of a raw ECG

data acquisition system, a smartphone responsible for pre-processing of the signal and a

server where advanced algorithms are implemented. This dissertation tackles some of the

key problems existing in the resource-saving CLT-ECG scheme. However, there are still

some issues to be dealt with before the system can be effectively and widely adopted. In

this chapter, the research works that have been conducted in this dissertation are concluded.

Furthermore, some possible research directions are also presented.

5.1 Conclusions

In this dissertation, three important issues that are closely related to the implementation

of a resource-saving CLT-ECG system scheme are studied. Particularly, the detection of

life-threatening algorithms, the discrimination of normal and abnormal heartbeats and clas-

sification of abnormal beats into different arrhythmia types are investigated. The conclusions

are drawn as follows.

• Life-Threatening Ventricular Arrhythmia Detection Using Personalized Fea-

tures
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We have studied a detection algorithm of life-threatening ventricular arrhythmias ex-

ploiting two newly-extracted features, namely, aveCC and medianCC. These two fea-

tures have been calculated based on the correlation coefficients between a patient-

specific regular QRS-complex template and his/her real-time ECG data, which cap-

tures subtle differences in the QRS complexes among different people. SVM-based

classification strategies have been developed exploiting a small set of most represen-

tative features selected from 11 newly extracted and 15 previously existing features.

The effectiveness of the proposed algorithms has been validated under both the record-

based and database-based data divisions. Specifically, under random record-based data

divisions, the classification algorithm using two features, VFleak and aveCC, achieves

an AUC value of 98.56%± 0.89%, SP of 94.80± 2.15%, and ACC of 94.66%± 1.97%;

and the classification algorithm using three features, VFleak, MEA, and aveCC, yields

an AUC of 98.98% ± 0.58%, SP of 95.56% ± 1.45%, and ACC of 95.46% ± 1.36%.

Similar results are also obtained under the database-based division scheme. It has

been observed that the results outperform the available classification performance in

the literature.

• A Novel Normal and Abnormal Heartbeat Classification Method for a

Resource-Saving CLT-ECG System Using OC-SVMs

We have developed a patient-specific arrhythmia detection algorithm using OC-SVMs,

aiming to improve the resource-saving rate in the CLT-ECG monitoring system. Two

types of heartbeat variations have been explored: WCI, which reflects a waveform

change in one of the three segments (P/QRS/T segments) within one heartbeat, and

modRRIR, which characterizes the successive heartbeat interval variation. The clas-

sification strategy has been designed by tuning the classifier adopting separately WCI

and modRRIR, and then combining them to obtain the overall classification results.

Evaluation of the proposed results using the publicly available MITDB database has
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yielded an ACC of 78.4%, SE of 76.5%, SP of 93.2%, and PP of 98.9%, and, and

has outperformed the results in the literature. Furthermore, the effectiveness of the

proposed algorithms using the data collected from the ECG platform Heartcarer built

has also been validated.

• Patient-Specific VEBs and SVEBs Classification of ECG Heartbeats Ex-

ploiting a Single Lead

We have examined a patient-specific single-lead ECG heartbeat classification strategy,

which discriminates VEBs and SVEBs. We have extracted intra-beat features, which

characterize the distortion of the waveform within one heartbeat, and inter-beat fea-

tures, which reflect the variation between successive heartbeats. The generality and

effectiveness of the extracted feature set has been verified by VEB detection using the

global classifier. Furthermore, we have proposed a novel fusion strategy combining a

global classifier and a local classifier, which takes into account of the patient-specific

information and thus can potentially improve the classification performance. By ex-

ploiting the high-confidence heartbeats to train the local classifier, fully-automatic

classification is realized without the intervention of physicians. Simulation results have

shown that comparable or even better classification performance is achieved, which val-

idates the effectiveness of the proposed strategy.

5.2 Future Work

The work presented in this dissertation has addressed some critical issues concerning the

implementation of the CLT-ECG monitoring system. However, there are still some open

problems pertaining to the effectiveness of the monitoring system. Specifically, the following

three research topics will be further studied.

• Exploitation of Disease-Specific Features and Integration of Experienced
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Classifiers

The standard ECG heartbeat classification algorithm consists of extracting features of

the heartbeat and then applying a certain classifier to identify the arrhythmia types.

In most of the literature, the authors extract the features from the signal processing

point of view, and the features extracted do not have an explicit relationship with the

arrhythmias considered. It is of great value to understand in-depth the dynamics of the

heart and the mechanics of how a certain type of arrhythmias affects the ECG signal.

Based on the understanding, disease-specific features can be extracted that better

reflect the arrhythmias of interest. Furthermore, in the clinical practice, for some

heartbeats that are not easy to identify, several experienced cardiologists will discuss

and then reach a final decision. This idea can also be adopted, i.e., several classifiers

that based on different sets of features conduct the classification and the classification

results are obtained by integrating comprehensively each of the experienced ‘classifiers’.

• Behavior-Adaptive Arrhythmia Classification Algorithms

The classification strategy, based on the training dataset, can be categorized into global

classifiers and local classifiers. The global classifier captures the general characteristics

of the heartbeats, whereas the local classifier takes the patient-specific characteristics

into account. However, when a specific patient is in different conditions, for example,

running, walking, standing or lying down, the characteristics may change. The current

classification strategy does not consider such situations, which is necessary to investi-

gate since for some mild arrhythmias, long-term ECG signal needs to be monitored.

There are possibly two directions or the combination of them to solve this problem:

1) some advanced adaptive algorithms need to be developed that can automatically

identify the subjects’ condition change and conduct the classification accordingly and

2) supplementary information such as the gestures, speed of the subjective needs to

be provided to the classification algorithm so that the current algorithm is aware of
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the condition change. In general, the patient-specific classification algorithms that are

capable of adapting to the patients’ behavior are definitely promising methods and will

be adopted in the clinical practice for the long-term ECG signal monitoring system.

• Heart Disease Risk Prediction

The current ECG signal processing works mainly focus on heart disease classification

for patients. Another potential research direction is to predict a heart disease risk for

normal people, which means a potential health suggestion will be provided in advance

to slow down the process of the heart getting ill. This direction will become more and

more important in the future and benefit a larger group of people.



92

Patents and Publications

• Ping Cheng and Xiaodai Dong, “A Personalized Template Based Method for Elec-

trocardiogram Ventricular Arrhythmia Detection,” U.S. provisional patent application

No. 62471334 filed in Mar. 2017.

• P. Cheng and X. Dong, “Life-Threatening Ventricular Arrhythmia Detection with Per-

sonalized Features,” in IEEE Access, pp. 14195–14203, Jul. 2017.

• P. Cheng, and X. Dong, “A Novel Normal and Abnormal Heartbeat Classification

Method for a Resource-Saving Cloud based Long-Term ECG Monitoring System Using

One-Class Support Vector Machines,” in preparation to submit.

• P. Cheng, and X. Dong, “A Patient-Specific Single-Lead ECG Heartbeat Classification

Using Support Vector Machines,” in preparation to submit.
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[39] E. Laciar, R. Jané, and D. H. Brooks, “Improved alignment method for noisy high-

resolution ECG and holter records using multiscale cross-correlation,” IEEE Trans.

Biomed. Eng., vol. 50, pp. 344–353, Mar. 2003.

[40] S. Dutta, A. Chatterjee, and S. Munshi, “Correlation technique and least square sup-

port vector machine combine for frequency domain based ECG beat classification,”

Med. Eng. Phys., vol. 32, pp. 1161–1169, Dec. 2010.



98

[41] N. S. Hammed and M. I. Owis, “Patient adaptable ventricular arrhythmia classifier

using template matching,” in IEEE Conf. Biomed. Circuits and Systems, pp. 1–4, Oct.

2015.

[42] A. Page, T. Soyata, J. P. Couderc, and M. Aktas, “An open source ECG clock generator

for visualization of long-term cardiac monitoring data,” IEEE Access, vol. 3, pp. 2704–

2714, Dec. 2015.

[43] G. Moody and R. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE

Eng. Med. Biol. Mag., vol. 20, pp. 45–50, May-Jun. 2001.

[44] F. M. Nolle, F. K. Badura, J. M. Catlett, R. W. Bowser, and M. H. Sketch, “CREI-

GARD, a new concept in computerized arrhythmia monitoring systems,” in IEEE

Conf. Comput. Cardiol., vol. 13, pp. 515–518, 1986.

[45] S. Greenwald, “The development and analysis of a ventricular fibrillation detector,”

Master’s thesis, Massachusetts Institute of Technology, MA, USA, May 1986.

[46] J. Li, G. Deng, W. Wei, H. Wang, and Z. Ming, “Design of a real-time ECG filter for

portable mobile medical systems,” IEEE Access, vol. 5, pp. 696–704, Mar. 2016.

[47] A. Amann, R. Tratnig, and K. Unterkofler, “A new ventricular fibrillation detec-

tion algorithm for automated external defibrillators,” in IEEE Conf. Comput Cardiol.,

pp. 559–562, Sept. 2005.

[48] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans.

Biomed. Eng., vol. 32, pp. 230–236, Mar. 1985.

[49] G. Camps-Balls, J. L. Rojo-Alvarez, and M. Martinez-Ramon, Kernel Methods in

Bioengineering, Communications and Image Processing. PA, USA: Idea Group Inc.,

Jan. 2007.



99

[50] V. N. Vapnik, The Nature of Statistical Learning Theory. NY, USA: Springer-Verlag,

Mar. 1995.

[51] W. Lu, “Support Vector Machines,” in Leture Notes of Machine Learning for Signal

Processing, ch. 5, pp. 140–161, BC, Canada: University of Victoria, Jan. 2015.

[52] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, “Training versus testing,” in

Learning From Data, ch. 2, pp. 39–76, Berlin, Germany: AMLBook, Mar. 2012.

[53] P. Cheng and X. Dong, “Life-threatening ventricular arrhythmia detection with per-

sonalized features,” IEEE Access, vol. 5, pp. 14195–14203, Jul. 2017.

[54] G. Belforte, R. D. Mori, and F. Ferraris, “A contribution to the automatic processing

of electrocardiograms using syntactic methods,” IEEE Trans. Biomed. Eng., vol. 26,

pp. 125–136, Mar. 1979.

[55] P. Trahanias and E. Skordalakis, “Syntactic pattern recognition of the ECG,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 12, pp. 648–657, Jul. 1990.

[56] P. Macfarlane, B. Devine, and E. Clark, “The university of glasgow Uni-G ECG anal-

ysis program,” in IEEE Conf. Comput. Cardiol., vol. 32, pp. 451–454, Sept. 2005.

[57] A. R. Houghton and D. Gray, Making Sense of the ECG: A Hands-On Guide. Lin-

colnshire, UK: CRC Press, 4nd ed., Jan. 2014.

[58] U. Satija, B. Ramkumar, and M. S. Manikandan, “Robust cardiac event change detec-

tion method for long-term healthcare monitoring applications,” IET Healthc. Technol.

Lett., vol. 3, pp. 116–123, Dec. 2016.

[59] C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic points using wavelet

transforms,” IEEE Trans. Biomed. Eng., vol. 42, pp. 21–28, Jan. 1995.



100

[60] J. Martinez and P. Laguna, “A wavelet-based ECG delineator: evaluation on standard

databases,” IEEE Trans. Biomed. Eng., vol. 51, pp. 570–581, Mar. 2004.

[61] B. Weng, M. Blanco-Velasco, and K. Barner, “ECG denoising based on the empirical

mode decomposition,” in IEEE Int. Conf. Eng. Med. Biol. Soc., pp. 1–4, Aug.-Sept.

2006.

[62] N. Srinivasan, D. F. Ge, and S. M. Krishnan, “Autoregressive modeling and clas-

sification of cardiac arrhythmias,” in IEEE Int. Conf. Eng. Med. Biol. Soc., vol. 2,

pp. 1405–1406, Oct. 2002.

[63] H. Hussain and L. L. Fatt, “Efficient ECG signal classification using sparsely connected

radial basis function neural network,” in Int. Conf. Circuits Syst. Electron. Contr. Sig.

Process., pp. 412–416, Dec. 2007.

[64] R. R. Marcello, S. F. Jamil, and S. J. Philip, “Beat detection and classification of ECG

using self organizing maps,” IEEE Int. Conf. Eng. Med. Biol. Soc., vol. 1, pp. 89–91,

Oct.-Nov. 1997.

[65] Y. Ozbay, R. Ceylan, and B. Karlik, “Integration of type-2 fuzzy clustering and wavelet

transform in a neural network based ECG classifier,” Expert Syst. Appl., vol. 38,

pp. 1004–1010, Jan. 2011.

[66] H. M. Rai, A. Trivedi, and S. Shukla, “ECG signal processing for abnormalities detec-

tion using multi-resolution wavelet transform and artificial neural network classifier,”

Measurement, vol. 46, pp. 3238–3246, Nov. 2013.

[67] S. Chauhan and L. Vig, “Anomaly detection in ECG time signals via deep long short-

term memory networks,” in IEEE Int. Conf. Data Science and Advanced Analytics,

pp. 1–7, Oct. 2015.



101

[68] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG classification

by 1-d convolutional neural networks,” IEEE Trans. Biomed. Eng., vol. 63, pp. 664–

675, Mar. 2016.

[69] P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T. Zhou, T. Li, and J. Li, “High-performance

personalized heartbeat classification model for long-term ECG signal,” IEEE Trans.

Biomed. Eng., vol. 64, pp. 78–86, Jan. 2017.

[70] P. de Chazal, B. G. Celler, and R. B. Rei, “Using wavelet coefficients for the classi-

fication of the electrocardiogram,” in IEEE Int. Conf. Eng. Med. Biol. Soc., vol. 1,

pp. 64–67, Jul. 2000.

[71] P. de Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of heartbeats

using ECG morphology and heartbeat interval features,” IEEE Trans. Biomed. Eng.,

vol. 51, pp. 1196–1206, Jul. 2004.

[72] L. Sörnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological

Applications, ch. 6, pp. 411–452. Academic Press, 1st ed., Jun. 2005.

[73] M. A. Escalona-Moran, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Electrocar-

diogram classification using reservoir computing with logistic regression,” IEEE J.

Biomed. Health Inform., vol. 19, pp. 892–898, May 2015.

[74] C. M. Yu, H. Lin, Q. Zhang, and J. E. Sanderson, “High prevalence of left ventricular

systolic and diastolic asynchrony in patients with congestive heart failure and normal

QRS duration,” Cardiovasc. Med., vol. 89, pp. 54–60, Mar. 2003.

[75] E. J. da S. Luz, W. R. Schwartz, G. Camara-Chavez, and D. Menotti, “ECG-based

heartbeat classification for arrhythmia detection: A survey,” Comput. Methods and

Programs Biomed., vol. 127, pp. 144–164, Apr. 2016.



102

[76] C. Ye, M. T. Coimbra, and B. V. K. V. Kumar, “Arrhythmia detection and classifi-

cation using morphological and dynamic features of ECG signals,” in IEEE Int. Conf.

Eng. Med. Biol. Soc., pp. 1918–1921, Aug. 2010.

[77] S. Yu and K. Chou, “Integration of independent component analysis and neural net-

works for ECG beat classification,” Expert Syst. Appl., vol. 34, pp. 2841–2846, May

2008.

[78] S. Yu and Y. Chen, “Electrocardiogram beat classification based on wavelet transfor-

mation and probabilistic neural network,” Pattern Recognit. Lett., vol. 28, pp. 1142–

1150, Jul. 2007.

[79] I. Guler and E. D. Ubeyli, “ECG beat classifier designed by combined neural network

model,” Pattern Recognit., vol. 38, pp. 199–208, Feb. 2005.

[80] M. H. Song, J. Lee, S. P. Cho, K. J. Lee, and S. K. Yoo, “Support vector machine

based arrhythmia classification using reduced features,” Int. J. Control, Autom. Syst.,

vol. 3, pp. 571–579, Dec. 2005.

[81] K. Robert and E. C. Colleen, Basis and Treatment of Cardiac Arrhythmias. NY, USA:

Springer, 1st ed., Sept. 2005.

[82] S. Evans, H. Hastings, and M. Bodenheimer, “Differentiation of beats of ventricular

and sinus origin using a self-training neutal network,” PACE, vol. 17, pp. 611–626,

Apr. 1994.

[83] K. Minami, H. Nakajima, and T. Toyoshima, “Real-time discrimination of ventricular

tachyarrhythmia with Fourier-transform neural network,” IEEE Trans. Biomed. Eng.,

vol. 46, pp. 179–185, Feb. 1999.

[84] G. A. Ng, “Treating patients with ventricular ectopic beats,” Heart, vol. 92, pp. 1707–

1712, Nov. 2006.



103

[85] I. Christov, I. Jekova, and G. Bortolan, “Premature ventricular contraction classifica-

tion by the kth nearest-neighbours rule,” Physiol. Meas., vol. 26, pp. 123–130, Jan.

2005.

[86] P. de Chazal and R. B. Reilly, “A patient-adaptive heartbeat classifier using ECG

morphology and heartbeat interval features,” IEEE Trans. Biomed. Eng., vol. 53,

pp. 2535–2543, Dec. 2006.

[87] C. Ye, B. V. K. V. Kumar, and M. T. Coimbra, “Heartbeat classification using mor-

phological and dynamic features of ECG signal,” IEEE Trans. Biomed. Eng., vol. 59,

pp. 2930–2941, Oct. 2012.

[88] L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passariello, “Comparing wavelet trans-

forms for recognizing cardiac patterns,” IEEE Trans. Biomed. Eng., vol. 14, pp. 167–

173, Mar.-Apr. 1995.

[89] T. Ince, S. Kiranyaz, and M. Gabbouj, “A generic robust system for automated patient-

specific classification of electrocardiogram signals,” IEEE Trans. Neural Netw., vol. 56,

pp. 1415–1426, May 2009.

[90] S. Osowski, L. T. Hoa, and T. Markiewic, “Support vector machine-based expert

system for reliable heartbeat recognition,” IEEE Trans. Biomed. Eng., vol. 51, pp. 582–

589, Apr. 2004.

[91] X. Jiang, L. Q. Zhang, Q. B. Zhao, and S. Albayrak, “ECG arrhythmia recognition

system based on independent component analysis feature extraction,” in IEEE Region

10 Conf., pp. 1–4, Nov. 2006.

[92] M. Llamedo and J. P. Martinez, “Heartbeat classification using feature selection driven

by database generalization criteria,” IEEE Trans. Biomed. Eng., vol. 58, pp. 616–625,

Mar. 2011.



104

[93] W. Jiang and S. G. Kong, “Block-based neural networks for personalized ECG signal

classification,” IEEE Trans. Neural Netw., vol. 18, pp. 1750–1761, Nov. 2007.

[94] Y. H. Hu, S. Palreddy, and W. J. Tompkins, “A patient-adaptable ECG beat classifier

using a mixture of experts approach,” IEEE Trans. Biomed. Eng., vol. 44, pp. 891–900,

Sept. 1997.

[95] H. EI-Saadawy, M. Tantawi, H. A. Shedeed, and M. F. Tolba, “Electrocardiogram

(ECG) classification based on dynamic beats segmentation,” in Int. Conf. Inf. Syst.,

pp. 75–80, May 2016.

[96] Z. Zhang, J. Dong, X. Luo, K. Choi, and X. Wu, “Heartbeat classification using

disease-specific feature selection,” Comput. Biol. Med., vol. 46, pp. 79–89, Mar. 2014.

[97] C. L. Herry, M. Frasch, A. J. Seely, and H. Wu, “Heart beat classification from single-

lead ECG using the synchrosqueezing transform,” Physiol. Meas., vol. 38, pp. 171–178,

Jan. 2017.

[98] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sörnmo, “Cluster-

ing ECG complexes using Hermite functions and self-organizing maps,” IEEE Trans.

Biomed. Eng., vol. 47, pp. 838–848, Jul. 2000.

[99] C. Ye, B. V. K. V. Kumar, and M. T. Coimbra, “An automatic subject-adaptable

heartbeat classifier based on multiview learning,” IEEE J. Biomed. Health Inform.,

vol. 20, pp. 1485–1492, Nov. 2016.

[100] M. Llamedo and J. P. Martinez, “Automatic patient-adapted ECG heartbeat classifier

allowing expert assistance,” IEEE Trans. Neural Netw., vol. 59, pp. 2312–2320, Aug.

2012.



105

[101] S. Kiranyaz, T. Ince, and M. Gabbouj, Multi-Dimensional Partical Swarm Optimiza-

tion for Machine Learning and Pattern Recognition. New York, USA: Springer, Jul.

2013.

[102] E. D. Ubeyli, “Eigenvector methods for automated detection of electrocardiographic

changes in partial epileptic patients,” IEEE Trans. Inf. Technol. Biomed., vol. 13,

pp. 478–485, Jul. 2009.

[103] V. Krasteva and I. Jekova, “QRS template matching for recognition of ventricular

ectopic beats,” Ann. Biomed. Eng., vol. 35, pp. 2065–2076, Dec. 2007.

[104] M. Zubair, J. Kim, and C. Yoon, “An automated ECG beat classification system using

convolutional neural networks,” in Int. Conf. IT Convergence Security, pp. 1–5, Sept.

2016.

[105] C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic points using wavelet

transforms,” IEEE Trans. Biomed. Eng., vol. 42, pp. 21–28, Jan. 1998.

[106] I. Jekova, “Shock advisory tool: Detection of life-threatening cardiac arrhythmias and

shock success prediction by means of a common parameter set,” Biomed. Signal Pro-

cess. Control, vol. 2, pp. 25–33, Jan. 2007.

[107] Q. Li, R. G. Mark, and G. D. Clifford, “Robust heart rate estimation from multiple

asynchronous noisy sources using signal quality indices and a kalman filter,” Physiol.

Meas., vol. 29, pp. 15–32, Jan. 2008.

[108] AAMI, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment

Measurement Algorithms Association for the Advancement of Medical Instrumentation.

Arlington, VA: ANSI/AAMI EC57, 1998.



106

[109] C. Ye, Advanced Heartbeat Classification Models for Reliable Electrocardiogram Anal-

ysis in Ambulatory Health Monitoring. PhD thesis, Carnegie Mellon University, PA,

USA, Nov. 2013.

[110] P. de Chazal, “Detection of supraventricular and ventricular ectopic beats using a

single lead ECG,” in IEEE Int. Conf. Eng. Med. Biol. Soc., pp. 45–48, Jul. 2013.


