Non-uniform sources in the total/scattered finite difference time domain (FDTD) method

Show simple item record

dc.contributor.author Potter, Michael E.
dc.date.accessioned 2018-11-01T23:18:25Z
dc.date.available 2018-11-01T23:18:25Z
dc.date.copyright 2001 en_US
dc.date.issued 2018-11-01
dc.identifier.uri https://dspace.library.uvic.ca//handle/1828/10216
dc.description.abstract The Finite-Difference Time-Domain (FDTD) method has been used extensively in electromagnetic field modeling because of its ability to robustly handle interactions of fields with complex heterogeneous structures. In particular, the total/scattered field formulation has allowed for efficient implementation of arbitrarily directed uniform plane waves, consequently facilitating efficient modeling of far-field scattering problems. The total/scattered approach is not restricted to plane waves and can be expanded to any waveforms that can be described in analytical or semi-analytical form. While existing formulations of FDTD have been immensely successful, they are not well suited to problems that involve near field scattering/interaction problems, where both the source and object are in the same domain but at a substantial distance from each other. This is due to the exceedingly high demands for computational resources that may result from the domain size, and/or dramatically different requirements for the mesh density in the source and object areas. One solution to this problem is to separate the domain into source and scatterer regions coupled by surface boundary radiation conditions. However, this method can incur large storage requirements for calculation of the radiation conditions. A specific near-field situation of interest to the utility industry is the case of workers near high voltage powerlines. In this instance, the field pattern takes on a cylindrical, transverse electromagnetic character. More general radiating sources can be accurately represented in the near-field by using spherical wave expansions, which are often used to represent antennas measured on test ranges. Successful implementation of these analytic solutions is feasible within the FDTD framework, and would allow for the illumination of the scatterer modeled at a considerably lower cost than in the standard approach. This thesis presents a method where these non-uniform, near-field, sources can be implemented implicitly as source conditions in an existing FDTD method. The specific case of powerline fields is described first, followed by the more general case of spherical waves. The analytic solution for powerline fields is implemented to show that near-field source configuration can be successfully modeled implicitly with accurate and efficient results. The method is validated by comparing with known analytic solutions, with very good accuracy being achieved. Then, a specific example of a human under a powerline close by is modeled to examine predictions made earlier under the assumption of a plane wave source condition. For a similar powerline source configuration, results of organ dosimetry predict that induced fields are from ten to sixty percent greater than predicted with the plane wave source. This same approach is applied to model a more general and difficult problem, namely spherical waves as sources in the total/scattered FDTD, called the SW-FDTD. Since transverse properties of spherical modes are known, the behavior of a mode can be represented on a one-dimensional radial grid. Thus, much like the plane wave sources in the FDTD method, the spherical wave modes are time-stepped on one-dimensional staggered electric/magnetic field source grids in the radial direction, representing mode propagation in free space. Spherical wave modes can then be interpolated and summed on the Huygens’ surface to represent the total field of the source, thus providing the coupling between the complex source and a scatterer using one-dimensional grids. It is assumed that the object of interest is beyond the reactive near-field of the source, and therefore there is no significant coupling between source and object. The SW-FDTD method is validated by comparing simulations with several analytic solutions that increase in complexity, demonstrating very good accuracy. Issues relating to the numerical implementation are discussed, including the effects of numerical dispersion, stability, and simple Mur first order boundary conditions. Incorporation of the method as a source condition in an existing FDTD program, and validation of this synthesis, show that the SW-FDTD method can implictly model sources as accurately as explicit models do. The efficiency, and the reduction of errors remain issues for further research to improve the overall utility of the SW-FDTD method. en_US
dc.language English eng
dc.language.iso en en_US
dc.rights Available to the World Wide Web en_US
dc.subject Finite differences en_US
dc.subject Time-domain analysis en_US
dc.subject Electromagnetism en_US
dc.title Non-uniform sources in the total/scattered finite difference time domain (FDTD) method en_US
dc.type Thesis en_US
dc.contributor.supervisor Okoniewski, M.
dc.contributor.supervisor Stuchly, M. A.
dc.degree.department Department of Electrical and Computer Engineering en_US
dc.degree.level Doctor of Philosophy Ph.D. en_US
dc.description.scholarlevel Graduate en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UVicSpace


My Account