Gold nanoparticle uptake in synchronized cell populations and the effect on radiation sensitization

Show simple item record

dc.contributor.author Rieck, Kristy
dc.date.accessioned 2019-04-16T23:25:54Z
dc.date.available 2019-04-16T23:25:54Z
dc.date.copyright 2019 en_US
dc.date.issued 2019-04-16
dc.identifier.uri http://hdl.handle.net/1828/10714
dc.description.abstract To overcome the challenge in radiation therapy of delivering the prescribed dose to cancer cells while sparing normal tissue, preferential introduction of high Z material to tumour cells works as a method of radiation sensitization. Gold nanoparticles (GNPs) are very useful in this respect. It has been shown that the size, shape, and surface properties of GNPs affect their cellular uptake. Manipulation of the cell cycle to arrest cells at different stages offers a unique strategy to study the molecular and structural events as the cell cycle progresses. To optimize delivery of GNPs into tumour cells and enhance the effect of radiosensitization, nanoparticle (NP) uptake in synchronized populations of MDA-MB-231 breast cancer cells was investigated. Populations of MDA-MB-231 cells were first synchronized in S-phase using double-thymidine block, and allowed to progress through cell cycle in synchronization. Synchronized cells were incubated with 5 nm GNPs, 15 nm GNPs, 46 nm GNPs and two formulations of lipid NP encapsulated 5 nm GNPs. Uptake of NPs was visualized using hyperspectral optical imaging and quantified with inductively coupled plasma mass spectrometry (ICP-MS). Following internalization of GNPs, cells were irradiated with 6 MV photon beams from a linear accelerator, and the survival fraction and induced deoxyribonucleic acid (DNA) damage were studied. Cell cycle analysis after a double-thymidine block showed that the cell population was well synchronized. Uptake of NPs was 1.5-2 times higher in synchronized cell population compared to the control where cells were at different stages of the cell cycle. Clonogenic studies were used to evaluate the cell survival following radiation treatment. After a dose of 2 Gy, there was a decrease in cell survival fraction in synchronized cells treated with GNPs prior to radiation treatment compared to unsynchronized cells (control) indicating GNP-mediated dose-enhancement. The protein γ-H2AX, which is recruited to sites of DNA double strand breaks, was fluorescently labeled to evaluate damage due to the radiation treatment. Our results show more DNA double strand breaks in cells treated with GNPs prior to radiation. Interaction of ionization radiation with GNPs inside of cells produce secondary electrons. These secondary electrons can interact with water molecules and produce additional free radicals. These low energy electrons and free radicals interact with important cell structures and could cause cellular damage. Cell cycle synchronization has been shown to enhance GNP/PEG/RGD uptake in MDA-MB-231 cells resulting in greater cell radiosensitization and cellular damage. Cell synchronization is therefore an additional method available that can be employed to improve GNP uptake in cells. en_US
dc.language English eng
dc.language.iso en en_US
dc.rights Available to the World Wide Web en_US
dc.subject Cell cycle en_US
dc.subject Radiation therapy en_US
dc.subject Gold nanoparticles en_US
dc.title Gold nanoparticle uptake in synchronized cell populations and the effect on radiation sensitization en_US
dc.type Thesis en_US
dc.contributor.supervisor Chithrani, Devika
dc.degree.department Department of Physics and Astronomy en_US
dc.degree.level Master of Science M.Sc. en_US
dc.description.scholarlevel Graduate en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UVicSpace


My Account