Detecting Landscape Changes in High Latitude Environments Using Landsat Trend Analysis: 1. Visualization

Date

2014

Authors

Fraser, Robert H.
Olthof, Ian
Kokelj, Steven V.
Lantz, Trevor C.
Lacelle, Denis
Brooker, Alexander
Wolfe, Stephen
Schwarz, Steve

Journal Title

Journal ISSN

Volume Title

Publisher

Remote Sensing

Abstract

Satellite remote sensing is a promising technology for monitoring natural and anthropogenic changes occurring in remote, northern environments. It offers the potential to scale-up ground-based, local environmental monitoring efforts to document disturbance types, and characterize their extents and frequencies at regional scales. Here we present a simple, but effective means of visually assessing landscape disturbances in northern environments using trend analysis of Landsat satellite image stacks. Linear trends of the Tasseled Cap brightness, greenness, and wetness indices, when composited into an RGB image, effectively distinguish diverse landscape changes based on additive color logic. Using a variety of reference datasets within Northwest Territories, Canada, we show that the trend composites are effective for identifying wildfire regeneration, tundra greening, fluvial dynamics, thermokarst processes including lake surface area changes and retrogressive thaw slumps, and the footprint of resource development operations and municipal development. Interpretation of the trend composites is aided by a color wheel legend and contextual information related to the size, shape, and location of change features. A companion paper in this issue (Olthof and Fraser) focuses on quantitative methods for classifying these changes.

Description

Keywords

arctic, change detection, image stacks, disturbance, lakes, slumps, fires, environmental monitoring, cumulative impacts

Citation

Fraser, R. H., Olthof, I., Kokelj, S. V., Lantz, T. C., Lacelle, D., Brooker, A., Wolfe, S., & Schwarz, S. (2014). Detecting Landscape Changes in High Latitude Environments Using Landsat Trend Analysis: 1. Visualization. Remote Sensing, 6(11), 11533-11557. https://doi.org/10.3390/rs61111533.