Imaging major Canadian sedimentary basins and their adjacent structures using ambient seismic noise (and other applications of seismic noise)

Date

2021-05-05

Authors

Kuponiyi, Ayodeji Paul

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Over a decade ago, it was discovered that the earth’s natural seismic wavefields, propagating as seismic noise, can be processed using correlation methods to produce surface waves, similar to those generated by earthquakes. This discovery represents a paradigm shift in seismology and has led to several tomographic studies of earth structures, at different scales and resolutions, in previously difficult-to-study areas around the world. This PhD dissertation presents research results on multi-scale and multi-purpose applications of ambient seismic noise wavefields under three topics: (1) Imaging of sedimentary basins and sub-basin structures in eastern and western Canada using ambient seismic noise, (2) Combining measurements from ambient seismic noise with earthquake datasets for imaging crustal and mantle structures, and (3) Temporal variation in cultural seismic noise and noise correlation functions (NCFs) during the COVID-19 lockdown in Canada. The first topic involved imaging the sedimentary basins in eastern and western Canada using shear wave velocities derived from ambient noise group velocities. The results show that the basins are characterized by varying depths, with maximums along the studied cross-sections in excess of 10 km, in eastern and western Canada. Characteristics of accreted terranes in eastern and western Canada are also revealed in the results. A seismically distinct basement is imaged in eastern Canada and is interpreted to be a vestige of the western African crust trapped beneath eastern Canada at the opening of the Atlantic Ocean. In western Canada, the 3D variation of the Moho and sedimentary basin depths is imaged. The thickest sediments in eastern Canada are found beneath the Queen Charlotte, Williston and the Alberta Deep basins, while the Moho is the deepest beneath the Williston basin and parts of Alberta basin and northern British Columbia. For the second topic, I worked on improving the seismological methodology to construct broadband (period from 2 to 220 s) dispersion curves by combining the dispersion measurements derived from ambient seismic noise with those from earthquakes. The broadband dispersion curves allow for imaging earth structures spanning the shallow crust to the upper mantle. For the third topic, I used ambient seismic data from the earlier stages of the COVID-19 pandemic to study the temporal variation of seismic power spectra and the potential impacts of COVID-19 lockdown on ambient NCFs in four cities in eastern and western Canada. The results show mean seismic power drops of 24% and 17% during the lockdown in eastern Canada, near Montreal and Ottawa respectively and reductions of 27% and 17% near Victoria and Sidney respectively. NCF signal quality within the secondary microseism band reached maximum before the lockdown, minimum during lockdown and at intermediate levels during the gradual reopening phase for the western Canada station pair.

Description

Keywords

Seismology, Ambient Noise, Seismic Noise, Tomography, Ambient Noise Tomography, Seismic Interferometry, Bayesian Statistics, Transdimensional Inversion, Sedimentary Basin, Western Canada Sedimentary Basin, Gulf of Saint Lawrence, Maritimes Basins, COVID-19, COVID-19 Seismic Studies, dispersion, surface waves, Rayleigh waves, surface waves tomography

Citation