Constraints on environmental and secular effects on the chemodynamical evolution of dwarf galaxies

Date

2012-07-20

Authors

Leaman, Ryan

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis presents observations and analysis relating to the understanding of processes that govern the formation and evolution of low mass galactic systems. In particular we have focused on separating out the contribution to the chemical and dynamical evolution of dwarf galaxies due to solely secular (internal) processes compared to external effects from the local environment a galaxy resides in. Our observational data focus on an extremely isolated dwarf galaxy, WLM, which we demonstrate has had a uniquely quiescent tidal history, thereby making it an excellent test case for such a study. With spectroscopic and photometric observations of the resolved stars and neutral gas in WLM we have been able to characterize the chemical, structural and kinematic properties of this gas rich dwarf galaxy. As WLM has not been subject to strong tidal or ram-pressure stripping of its stellar and gaseous populations, we have been able to compare the dynamical evolution and chemical history of WLM to theoretical models which are environment independent. A differential comparison of WLM to more environmentally processed dwarf galaxies in the Local Group has revealed that WLM's structural and dynamical state is far from the idealized picture of dIrrs as thin gas-rich rotating systems. The stellar component of WLM shows equal parts rotation and dispersion, and both the gaseous and stellar structural properties show an intrinsically thick axisymmetric configuration. The time evolution of the random (dispersion) component of the stellar orbital energy shows an increase with stellar age, which we show is consistent with secular processes alone - such as disk heating from giant molecular clouds and dark matter substructure. While the degree to which the thick structural and dynamically hot configuration for WLM is surprising, its chemical properties show remarkably consistent values with other galaxies of the same halo mass. Comparing the spatial chemical trends in WLM with other dwarf galaxies we identify a correlation between the strength of the radial abundance gradients and the angular momentum content of dwarf galaxies in the Local Group. Finally using a large sample of chemical abundance measurements in the literature for dwarf galaxies and star clusters, we demonstrate that their distributions of chemical elements all exhibit a binomial form, and use the statistical properties of the distributions to identify a new metric for differentiating low luminosity stellar systems. We further apply a simple binomial chemical evolution model to describe the self-enrichment and pre-enrichment in the two classes of objects, and suggest how this may be used to place constraints on the formation environments of globular clusters in particular.

Description

Keywords

Astrophysics, Galaxy Evolution and Formation, Galaxy Dynamics, Chemical Evolution of Galaxies, Stellar Populations

Citation