New technologies for At-211 targeted alpha-therapy research using Rn-211 and At-209

Show simple item record

dc.contributor.author Crawford, Jason Raymond
dc.date.accessioned 2016-08-30T20:11:35Z
dc.date.available 2016-08-30T20:11:35Z
dc.date.copyright 2016 en_US
dc.date.issued 2016-08-30
dc.identifier.uri http://hdl.handle.net/1828/7507
dc.description.abstract The most promising applications for targeted alpha-therapy with astatine-211 (At-211) include treatments of disseminated microscopic disease, the major medical problem for cancer treatment. The primary advantages of targeted alpha-therapy with At-211 are that the alpha-particle radiation is densely ionizing, translating to high relative biological effectiveness (RBE), and short-range, minimizing damage to surrounding healthy tissues. In addition, theranostic imaging with I-123 surrogates has shown promise for developing new therapies with At-211 and translating them to the clinic. Currently, Canada does not have a way of producing At-211 by conventional methods because it lacks alpha-particle accelerators with necessary beam energy and intensity. The work presented here was aimed at studying the Rn-211/At-211 generator system as an alternative production strategy by leveraging TRIUMF's ability to produce rare isotopes. Recognizing that TRIUMF provided production opportunities for a variety of astatine isotopes, this work also originally hypothesized and evaluated the use of At-209 as a novel isotope for preclinical Single Photon Emission Computed Tomography (SPECT) with applications to At-211 therapy research. At TRIUMF's Isotope Separator and Accelerator (ISAC) facility, mass separated ion beams of short­-lived francium isotopes were implanted into NaCl targets where Rn-211 or At-209 were produced by radioactive decay, in situ. This effort required methodological developments for safely relocating the implanted radioactivity to the radiochemistry laboratory for recovery in solution. For multiple production runs, Rn-211 was quantitatively transferred from solid NaCl to solution (dodecane) from which At-211 was efficiently extracted and evaluated for clinical applicability. This validated the use of dodecane for capturing Rn-211 as an elegant approach to storing and shipping Rn-211/At-211 in the future. Po-207 contamination (also produced by Rn-211 decay) was removed using a granular tellurium (Te) column before proceeding with biomolecule labelling. Although the produced quantities were small, the pure At-211 samples demonstrated these efforts to have a clear path of translation to animal studies. For the first time in history, SPECT/CT was evaluated for measuring At-209 radioactivity distributions using high energy collimation. The spectrum detected for At-209 by the SPECT camera presented several photopeaks (energy windows) for reconstruction. The 77-90 Po X­-ray photopeak reconstructions were found to provide the best images overall, in terms of resolution/contrast and uniformity. Collectively, these experiments helped establish guidelines for determining the optimal injected radioactivity, depending on scan parameters. Moreover, At-209-based SPECT demonstrated potential for pursuing image-­based dosimetry in mouse tumour models, in the future. Simultaneous SPECT imaging with At-209 and I-123 was demonstrated to be feasible, supporting the future evaluation of At-209 for studying/validating I-123 surrogates for clinical image-based At-211 dosimetry. This work also pursued a novel strategy for labelling cancer targeting peptides with At-211, using octreotate (TATE, a somatostatin analogue for targeting tumour cells, mostly neuroendocrine tumours) prepared with or without N-terminus PEGylation (PEG2), followed by conjugation with a closo-decaborate linking moiety (B10) for attaching At-211. Binding affinity and in vivo biodistributions for the modified peptides were determined using iodine surrogates. The results indicated that B10-PEG2-TATE retained target binding affinity but that the labelling reaction with iodine degraded this binding affinity significantly, and although having high in vivo stability, no I-123-B10-PEG2-TATE tumour uptake was observed by SPECT in a mouse tumour model positive for the somatostatin receptor (sstr2a). This suggested that further improvements are required for labelling. A new method for producing At-211 at TRIUMF is established, and At-209-­based SPECT imaging is now demonstrated as a new preclinical technology to measure astatine biodistributions in vivo for developing new radiopharmaceuticals with At-211. Combined with the theranostic peptide labelling efforts with iodine, these efforts provide a foundation for future endeavours with At-211-­based alpha-therapy at TRIUMF. All procedures were performed safely and rapidly, suitable for preclinical evaluations. All animal studies received institutional ethics approval from the University of British Columbia (UBC). en_US
dc.language English eng
dc.language.iso en en_US
dc.rights Available to the World Wide Web en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ *
dc.subject Astatine-211 en_US
dc.subject Astatine-209 en_US
dc.subject Radon-211 en_US
dc.subject Radiotherapy en_US
dc.subject nuclear medicine en_US
dc.subject theranostics en_US
dc.subject SPECT en_US
dc.subject tumour en_US
dc.subject medical imaging en_US
dc.subject medical isotope production en_US
dc.subject internal radionuclide therapy en_US
dc.subject targeted alpha therapy en_US
dc.subject ion beam implantation en_US
dc.subject spallation en_US
dc.subject alpha-decay en_US
dc.title New technologies for At-211 targeted alpha-therapy research using Rn-211 and At-209 en_US
dc.type Thesis en_US
dc.contributor.supervisor Jirasek, Andrew
dc.contributor.supervisor Ruth, Thomas J.
dc.degree.department Department of Physics and Astronomy en_US
dc.degree.level Doctor of Philosophy Ph.D. en_US
dc.description.scholarlevel Graduate en_US

Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Available to the World Wide Web Except where otherwise noted, this item's license is described as Available to the World Wide Web

Search UVicSpace


My Account