Quantum field lens coding and classification algorithm to predict measurement outcomes

Date

2023

Authors

Alipour, Philip B.
Gulliver, T. Aaron

Journal Title

Journal ISSN

Volume Title

Publisher

MethodsX

Abstract

This study develops a method to implement a quantum field lens coding and classification algorithm for two quantum double-field (QDF) system models: 1- a QDF model, and 2- a QDF lens coding model by a DF computation (DFC). This method determines entanglement entropy (EE) by implementing QDF operators in a quantum circuit. The physical link between the two system models is a quantum field lens coding algorithm (QF-LCA), which is a QF lens distance-based, implemented on real N-qubit machines. This is with the possibility to train the algorithm for making strong predictions on phase transitions as the shared objective of both models. In both system models, QDF transformations are simulated by a DFC algorithm where QDF data are collected and analyzed to represent energy states and transitions, and determine entanglement based on EE. The method gives a list of steps to simulate and optimize any thermodynamic system on macro and micro-scale observations, as presented in this article: •The implementation of QF-LCA on quantum computers with EE measurement under a QDF transformation. •Validation of QF-LCA as implemented compared to quantum Fourier transform (QFT) and its inverse, QFT−1. •Quantum artificial intelligence (QAI) features by classifying QDF with strong measurement outcome predictions.

Description

P. B. A. acknowledges Dr. W. Chen endorsement from the Institute of Theoretical Physics at ETH Zürich, for comments on condensed matter physics. P. B. A. and T. A. G. thank Dr. T. Lu for his comments on the scalar field, dimensions and photonics, Dr. M. Laca for his comments on (3), (4), (5), (6), (7), (8), (9), (10), Dr. N. Neumann remarks from [52], [53], [54] on QAI classifiers, and the late Dr. F. Diacu for his input on phase transitions to parameterize their quantum probabilities in the proposed method.

Keywords

Quantum double-field, QDF Transformation, QDF Lens coding, DF Computation, Entanglement entropy, N-qubit machines, Quantum fourier transform, Quantum artificial intelligence, Quantum lens distance-based classification

Citation

Alipour, P. B. & Gulliver, T. A. (2023). Quantum field lens coding and classification algorithm to predict measurement outcomes. MethodsX, 10, 102136. https://doi.org/10.1016/j.mex.2023.102136