Srivastava, Hari M.Tanary, Azhar Y.Shah, Firdous A.2024-02-022024-02-0220232023Srivastava, H. M., Tantary, A. Y., & Shah, F. A. (2023). A new discretization scheme for the non-isotropic Stockwell transform. Mathematics, 11(8), 1839. https://doi.org/10.3390/math11081839https://doi.org/10.3390/math11081839http://hdl.handle.net/1828/15932To avoid the undesired angular expansion of the sampling grid in the discrete non-isotropic Stockwell transform, in this communication we propose a scale-dependent discretization scheme that controls both the radial and angular expansions in unison. Based on the new discretization scheme, we derive a sufficient condition for the construction of Stockwell frames in L²(ℝ²). .enstockwell transformtwo-dimensional fourier transformdiscretizationframeA new discretization scheme for the non-isotropic Stockwell transformArticle