Gebali, Aleya2012-08-232012-08-2320122012-08-23http://hdl.handle.net/1828/4156NEPTUNE Canada possesses a large collection of video data for monitoring marine life. Such data is important for marine biologists who can observe species in their natural habitat on a 24/7 basis. It is counterproductive for researchers to manually search for the events of interest (EOI) in a large database. Our study aims to perform the automatic detection of the EOI de ned as animal motion. The output of this approach is in a summary video clip of the original video fi le that contains all salient events with their associated start and end frames. Our work is based on Laptev [1] spatio-temporal interest points detection method. Interest points in the 3D spatio-temporal domain (x,y,t) require frame values in local spatio-temporal volumes to have large variations along all three dimensions. These local intensity variations are captured in the magnitude of the spatio-temporal derivatives. We report experimental results on video summarization using a database of videos from Neptune Canada. The eff ect of several parameters on the performance of the proposed approach is studied in detail.enComputer VisionVideo AbstractDetection of salient events in large datasets of underwater videoThesisAvailable to the World Wide Web