This is a post-print version of the following article:

Organic-inorganic hybrid pigments from flavylium cations and palygorskite

Gustavo Thalmer M. Silva, Cassio P. Silva, Marcelo H. Gehlen, Jessy Oake, Cornelia Bohne, & Frank H. Quina

July 2018

The final publication is available via ScienceDirect at:

Citation for this paper:

Organic/inorganic hybrid pigments from flavylium cations and palygorskite

Gustavo Thalmer M. Silva,1 Cassio P. Silva,1 Marcelo H. Gehlen,2 Jessy Oake,3 Cornelia Bohne,3 and Frank H. Quina*.1

1Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Cidade Universitária, São Paulo 05508-000, Brazil
2Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
3Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, PO Box 1700 STN CSC, Victoria, BC, Canada, V8W 2Y2

* Corresponding author.
E-mail address: quina@usp.br
Abstract

Features such as color, brightness and fluorescence are extremely important in applications of pigments. Hybrid materials inspired by the ancient Maya Blue pigment are a promising alternative to improve the properties and applicability of natural and synthetic dyes. In this work, we report the preparation, photophysical properties, and stability of several fluorescent hybrid pigments based on flavylium cations (FL) adsorbed on palygorskite (PAL). Five flavylium cations were investigated, viz., the 3',4',7-trimethoxyflavylium (FL1), 7-hydroxy-4'-methoxy-flavylium (FL2), 7-hydroxy-4-methylflavylium (FL3), 5,7-dihydroxy-4-methylflavylium (FL4) and 7-methoxy-4-methylflavylium (FL5) cations. Only FL1 and FL2, without a methyl substituent at the 4-position that could hinder inclusion in palygorskite channels, adsorbed strongly on PAL, producing fluorescent hybrid pigments with attractive colors. The spectroscopic and fluorescence properties of the FL1/PAL and FL2/PAL hybrid pigments were characterized. The color of the adsorbed dyes was somewhat more resistant to changes in external pH, photochemical stability was maintained and the thermal lability was markedly improved in the FL/PAL hybrid pigments, pointing to flavylium cations as promising chromophores for the development of fluorescent hybrid pigments with attractive colors.

Keywords: fluorescent hybrid pigments; palygorskite; dyes; clays; flavylium cations; color.
Graphical Abstract

Flavylum cation

\[
\text{H}_3\text{CO}\text{C}_6\text{H}_4\text{O}^+\text{C}_6\text{H}_4\text{OCH}_3\text{OCH}_3
\]

Clay

Adsorption

<table>
<thead>
<tr>
<th>Flavylum cation</th>
<th>Hybrid pigment</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image 1] 120 °C 2 h</td>
<td>![Image 2] 120 °C 24 h</td>
</tr>
</tbody>
</table>

1. Introduction

Hybrid materials prepared by the combination of dyes with inorganic substrates have been extensively studied in search of materials with unique properties and color attributes (preferably bright and/or fluorescent) that are chemically, thermally and light stable (Laguna et al., 2007; Teixeira-Neto et al., 2009, 2012; Dejoie et al., 2010; Giustetto et al., 2014; Lin et al., 2014). One of the oldest and perhaps the most famous example of an organic-inorganic hybrid material is the Maya Blue pigment, which was widely used in murals, codices, ceramics and sculptures by the Maya civilization in the Pre-Columbian era. Maya Blue is extremely stable, able to resist the attack of concentrated nitric acid, bases and organic solvents without losing its color (Sánchez Del Río and Martinetto, 2006; Arnold and Branden, 2008; Chiari et al., 2008; Giustetto et al., 2011). The amazing chemical and photochemical stability of Maya Blue is presumably due to its unique structure, which consists of the dye indigo protectively (and apparently irreversibly) inserted into the channels of palygorskite or sepiolite clay (Giustetto et al., 2005, 2006, 2011; Chiari et al., 2008; Tilocca and Fois, 2009).

Palygorskite (PAL) is a hydrated magnesium and aluminum phyllosilicate clay mineral. Unlike most clays, PAL has fibrous morphology, consisting of a layer structure of ribbons of tetrahedral silica and central magnesium octahedra oriented along the fibers. The octahedral sheet is sandwiched between two tetrahedral sheets that have periodic inversion of the apical oxygen, resulting in well-defined one-dimensional cavities or tunnels (Sánchez Del Río et al., 2009; Doménech et al., 2011) with dimensions 3.7 x 6.4 Å (Brigatti et al., 2006) and, on the external surface of the clay fibers, partially open grooves or channels (as denominated for sepiolite by, e.g., Ruiz-Hitzky (2001) and Martínez-Martínez et al. (2011)). Several studies have shown that palygorskite has two
main types of acidic sites, a sites of stronger acidity with an effective pK$_a$ in the range of 5-5.5 and more weakly acidic sites with a pK$_a$ around 9-9.5 (Frini-Srasra and Srasra, 2008; Acebal and Vico, 2017). The porous structure of this clay allows the insertion and/or adsorption of organic molecules and ions, making it a good adsorbent (Giustetto et al., 2014; Mu and Wang, 2016). Recent studies involving dyes and PAL clay have obtained several novel Maya Blue-like pigments (Lima et al., 2012; Fan et al., 2014; Zhang et al., 2015a, 2015b; Zhang et al., 2015c, 2015d), some of which are materials with interesting self-cleaning properties (Zhang et al., 2016a, 2016b). Adsorption of dyes onto PAL and PAL composites (Mu and Wang, 2016) and biomedical applications clay-drug hybrid materials (Kim et al., 2016) have been recently reviewed and the use of PAL as an adsorbent for environmental remediation continues to be of interest (Ugochukwu et al., 2013; Boudriche et al., 2015; Yang et al, 2018).

The chromophoric group of anthocyanins, which are responsible for most of the purple, blue and red colors of flowers and fruits, is a 7-hydroxyflavylium cation. The chemical and photochemical reactivity of synthetic flavylium cations mimics that of natural anthocyanins, with the advantage of the facility and versatility of modifying the substituents on the flavylium chromophore and consequently their reactivity. Although anthocyanins and synthetic flavylium cations have great potential for practical applications as dyes or antioxidants, these applications are limited by their chemical reactivity, which is affected by several factors including pH, temperature, light, oxygen, among others (Ferreira da Silva et al., 2005; Castañeda-Ovando et al., 2009; Quina et al., 2009; Cavalcanti et al., 2011; Silva et al., 2016).

The inclusion and/or adsorption of anthocyanins and flavylium cations in/on inorganic substrates such as mesoporous materials (Kohno et al., 2008a, 2011, 2015; Gago et al., 2017) and clays (Lima et al., 2007; Kohno et al., 2007, 2009, 2010; Ogawa
et al., 2017; Ribeiro et al., 2018), may represent promising alternatives for preventing the undesirable chemistry of these dye molecules. In the present work, we have investigated the preparation of flavylium cation/palygorskite (FL/PAL) complexes as prototypes for fluorescent hybrid anthocyanin/palygorskite pigments. The complexes that retained the more intense colors and fluorescence after exhaustive washing with acidic methanol were chosen for evaluation of the thermal, photochemical and pH stability of their color and fluorescence.

2. Experimental Section

2.1. Materials

The flavylium cation salts 3’,4’,7-trimethoxyflavylium chloride (FL1), 7-hydroxy-4’-methoxy-flavylium chloride (FL2), 7-hydroxy-4-methylflavylium chloride (FL3), 5,7-dihydroxy-4-methylflavylium chloride (FL4) and 7-methoxy-4-methylflavylium chloride (FL5) used in this work (Scheme 1) were available from previous studies of the group and the syntheses have been previously reported (Freitas et al., 2013; Held et al., 2016; Silva et al., 2018). The palygorskite used in this work was the Source Clay PFl-1 from the Clay Minerals Society. The chemical composition, characterization and properties of this clay have been described (Shariatmadari et al., 1999; Borden and Giese, 2001; Chipera and Bish, 2001; Guggenheim and Koster van Groos, 2001; Madejová and Komadel, 2001; Mermut and Cano, 2001; Li et al., 2003; Dogan et al., 2006; Frost et al., 2010). Hydrochloric acid (HCl, Vetec) was used as received, methanol (Merck) was treated with sodium and ultrapure water was used for the preparation of all aqueous solutions.
Scheme 1. Structures of the flavylium cations (FL) used in this work.

2.2. Preparation and physical characterization of the FL/PAL Hybrid Pigments

Aliquots of solutions of the FL in methanol (in which FL cations are highly soluble) containing 1% 1.0 mol dm⁻³ HCl (in order to suppress proton transfer and hydration of the flavylium cations) were added to the appropriate amount of PAL clay powder. The initial FL/PAL ratios utilized were 0.050, 0.075, 0.100 and 0.125 mmol g⁻¹. The resulting dispersions were stirred for 24 h in the dark at room temperature, centrifuged and the solid washed exhaustively with HCl-acidified methanol and dried at 45 °C under vacuum for 2 h. The amount of flavylium cation adsorbed was estimated from the decrease in the absorbance of the supernatant employing the known molar attenuation coefficient of each FL.

Powder X-ray diffractograms of PAL and FL1/PAL were determined with a Bruker D2 Phase diffractometer using Cu-Kα radiation (1.5418 Å, 30 kV, 15 mA) employing a scan step of 0.05°. Nitrogen adsorption/desorption isotherms were determined at -196 °C using a Quantachrome volumetric adsorption analyzer (Model 100E). The samples were outgassed for 24 h under reduced pressure at 80 °C. The specific
Surface areas (S_{BET}) and total pore volumes (V_{tot}) of the samples were determined by the BET (Brunauer et al., 1938) and BJH (Barrett et al., 1951) methods, respectively. Surface areas of the micropores (S_{micro}), the external surface areas (S_{ext}), the micropore volumes (V_{micro}), and the sum of meso- and macropore volumes ($V_{meso+macro}$) were estimated by the t-plot method (Lippens and de Boer, 1965).

2.3. Spectroscopic measurements

For the infrared measurements, about 1.50 mg of solid sample was added to approximately 150 mg of dry KBr in a small agate mortar and mixed by grinding. The resulting powder was pressed into a pellet using a hydraulic press (Caver, model 3912, Wabash). Infrared spectra of the pellets were collected using a Bruker Vector 22 FTIR spectrophotometer in the frequency range of 4000-500 cm$^{-1}$, 32 scans at 0.5 cm$^{-1}$ digital resolution.

The UV-Vis-diffuse reflectance (DR) spectra were measured with a Varian Cary 50 UV-vis Bio spectrophotometer equipped with a BarrelinoTM diffuse reflectance probe (Harrick Scientific Products, Inc.). Samples with greater amounts of adsorbed flavylium (FL1 and FL2) were diluted in barium sulfate. The diffuse reflectance spectra were converted to the corresponding reemission function, $F(R)$, employing the Kubelka-Munk equation (Tomasini et al., 2009):

$$F(R) = \frac{(1 - R)^2}{2R}$$

where R is the measured reflectance at each wavelength. CIELAB Color coordinates (CIE L*a*b*) (Gilchrist and Nobbs, 1999) were obtained from the UV-vis-DR measurements by using the software Agilent Cary WinUV Color. In this case, the samples were not diluted in barium sulfate in order to obtain the true color coordinates of the samples.
Absorbance spectra were measured using the same spectrophotometer or a Hewlett Packard 8452A diode array spectrometer.

All steady state fluorescence measurements were performed with a Hitachi F-4500 fluorescence spectrophotometer. For analysis of the solid samples, the instrument was equipped with a solid sample holder. The excitation and emission wavelengths are indicated in the figure legends. The slits were set to bandwidths of 5.0 nm for both excitation and emission monochromators of the hybrid pigments, and for FL1 and FL2 were 10/20 and 2.5/5.0 nm (excitation and emission), respectively. The experiments with the hybrid pigments were conducted in the solid state. For the steady-state fluorescence anisotropy measurements, the fluorescence spectrophotometer (Hitachi F-4500) was fitted with manual polarizers placed in the excitation and emission light pathways. The steady-state anisotropy \(r \) was calculated for the emission intensities determined for the four orientations of the polarizers: vertical-vertical (VV), vertical-horizontal (VH), horizontal-horizontal (HH) and horizontal-vertical (HV) employing the following equation (Lakowicz, 2006):

\[
r = \frac{I_{VV} - G I_{VH}}{I_{VV} + 2GI_{VH}}
\]

where \(G = I_{HV}/I_{HH} \) is a correction factor for the relative sensitivity of the detection system to horizontally and vertically polarized light.

Time-resolved fluorescence decay experiments were carried out using an OB920 single photon counting system (Edinburgh Instruments), exciting the sample with a 405 nm Picosecond Pulsed Diode Laser (EPL405). The solid sample was placed in a shallow quartz cell that was covered with a quartz glass and was placed in a front-face sample holder which is tilted so as to minimize specular reflections (Zhang et al., 2014). The bandwidth for the emission monochromator was 16 nm. A neutral density filter was employed for control of the photon flux from the excitation source that reached the
sample. The emission wavelengths set for the collection of the decays for the FL1/PAL and FL2/PAL samples were 575 and 525 nm, respectively. The fluorescence decays were collected with a 50 ns time window and the number of counts in the channel with maximum intensity was 10,000. Barium sulfate powder was used as a scatterer to collect the instrument response function (IRF). The fluorescence decays were fit to a sum of exponentials employing Edinburgh Instruments F900 software for reconvolution to extract the lifetimes. The quality of the fits was determined by the randomness of the residuals and the χ^2 values, which are ideally between 0.9 and 1.3.

For the anisotropy experiments, the diode laser was rotated to achieve vertical and horizontal polarizations of the excitation beam. For the emission collection, the polarizer between the sample and the emission monochromator was set to the required angles. The anisotropy decay measurements were performed with a 20 ns time window and the time required to collect 10000 counts was estimated. This time and the neutral density setting for the excitation beam were kept constant for the collection of the 4 decays with the different polarizations. The four decays were collected for each anisotropy calculation ($I_{VV}, I_{VH}, I_{HV}, I_{HH}$) and combined to obtain the anisotropy decay (Lakowicz, 2006):

$$r(t) = \frac{I_{VV}(t) - GI_{VH}(t)}{I_{VV}(t) + 2GI_{VH}(t)}$$

The anisotropy decay, calculated using the F900 software, was then fit to a sum of exponentials to estimate rotational correlation lifetimes.

2.4. Wide Field and Confocal Fluorescence Microscopy

Confocal fluorescence images were obtained using a plate scanning instrument based on a microscope (Olympus IX71) with a digital piezoelectric controller and stage (PI, E-710.3CD and P-517.3CD) for nanometric sample scanning. The excitation of the samples at 473 nm was provided by a Cobolt Blue diode laser. The circularly polarized
laser beam was focused on the samples with an UPLFLN 40X Olympus objective. The emission signal was separated from the laser excitation beam using Chroma Z470rd and ZET 473NF dichroic and notch filter, respectively. Photons were counted using an avalanche photodiode point detector (Perkin Elmer, SPCM-AQR-14) aligned with a 50 μm pinhole in the confocal line. Transistor-transistor logic (TTL) detector signals were registered in a counter/timer PCI card (NI 6601) and transferred to a personal computer for 2D plotting using a scanning control program written in C# (Ferreira et al., 2011). Fluorescence images were recorded using false-color mapping, reaching the best contrast enhancement according to the difference in intensity of the fluorescence signal. Wide-field images were obtained with the same fluorescence microscope by adapting an optical lens in the epifluorescence entrance with focus on the back aperture of the objective. The samples were excited at 405 nm with a Coherent Cube CW laser and the emission was selected by a dichroic cube (Chroma, z405lp) and images were registered in a color camera (ThorLabs DCU223C) coupled to the right primary port of the Olympus IX71 (Lauer et al., 2014).

2.5. Photochemical and Thermal stability and sensitivity to pH

The UV radiation resistance tests of the samples were performed using an Oriel® (California, USA) Sol UV-2 Solar simulator (85.7 % UV-A, 11 % UV-B and 3.3 % of visible light). The samples were exposed to a radiation intensity of 75.0 W m⁻² UV-A (365 nm) and 43.0 W m⁻² UV-B (312 nm). The irradiations were carried out at room temperature (25 °C) with an exposure time of 6 h. UV-vis-DR measurements were used to verify any spectral and color changes.

In order to verify the reactivity of the FL cations adsorbed into/onto PAL, FL1/PAL and FL2/PAL samples were added to 5 mL of 10 mmol dm⁻³ phosphate buffer
solution at pH = 9. After 24 h, the samples were centrifuged and dried. UV-vis-DR measurements were used to verify any spectral and color changes. In order to compare the stability of the hybrid pigments with the respective free FL, the spectra of FL in 10 mmol dm\(^{-3}\) phosphate buffer solution, pH = 8.5, were also obtained. The reversibility was examined by adding FL to 10 mmol dm\(^{-3}\) acetate buffer solutions at pH = 4, 5 or 6, followed by addition of 0.1 g of PAL after discoloration of the solutions due to hydration of the flavylium cation. This test was carried out under stirring at room temperature (ca. 20 °C) and accomplished by taking digital images as a function of the time.

Thermal stability was investigated by submitting FL1/PAL and FL2/PAL samples to heating at 120 °C under vacuum for 24 h and comparing with FL cations in solid form that were submitted to the same temperature for 2 h. Measurements of the color coordinates and digital images were used to verify any color changes.

3. Results and discussion

3.1. Hybrid Pigment Formation

Initial studies clearly showed that the relative amount of flavylium cation adsorbed and the colors of the samples were influenced by the substituents on the FL cations. Five FL cations with similar substituents at different positions but with different pH-dependent equilibria and different molecular sizes and solvophobicity/solvophilicity, were chosen for evaluation. Both FL1 and FL2 adsorbed strongly on PAL (Table 1) and imparted attractive colors to the samples (Figure S1 of the Supplementary Material), even after exhaustive washing with acidic methanol with the objective of removing loosely physiosorbed dye. In contrast, the other three flavylium cations all have a methyl group at the 4-position, i.e., FL3, FL4 and FL5, and all adsorbed poorly on PAL, failing to impart attractive coloration to the clay. In the case of FL4, the amount adsorbed was
miniscule, as shown in Table 1 and in Figure S2 of the Supplementary Material. Since affinity and stability should parallel each other, our subsequent studies of the hybrid pigments focused on those derived from FL1 and FL2, i.e., FL1/PAL and FL2/PAL, respectively.

Table 1. Relative amounts of flavylium cation adsorbed, in μmol per g of PAL.

<table>
<thead>
<tr>
<th>Initial FL/PAL ratio</th>
<th>FL1</th>
<th>FL2</th>
<th>FL3</th>
<th>FL4</th>
<th>FL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>40</td>
<td>24</td>
<td>12</td>
<td>< 0.1</td>
<td>< 1</td>
</tr>
<tr>
<td>75</td>
<td>59</td>
<td>29</td>
<td>7</td>
<td>< 0.1</td>
<td>9</td>
</tr>
<tr>
<td>100</td>
<td>67</td>
<td>31</td>
<td>19</td>
<td>< 0.1</td>
<td>3</td>
</tr>
<tr>
<td>125</td>
<td>72</td>
<td>33</td>
<td>12</td>
<td>< 0.1</td>
<td>14</td>
</tr>
</tbody>
</table>

3.2. X-Ray Diffraction and N_2 adsorption isotherms

The powder X-ray diffractograms of FL1/PAL with the highest dye loading were indistinguishable from that of the raw PAL clay itself (Figure S3 of the Supplementary Material), which was in turn the same as that published for the raw PFl1 Source Clay (Chipera and Bish, 2001). This is an expected result since the dye loading was nonetheless still relatively low and the interlayer spacings of one-dimensional clays such as palygorskite are known to be fairly insensitive to the inclusion of organic molecules (Giustetto et al., 2014; Chang et al., 2016; Yang et al., 2018).

Table 2 shows the specific surface areas (S_{BET}) and total pore volumes (V_{tot}) of the FL1/PAL and FL2/PAL samples with the highest amounts of adsorbed dyed (72 and 33 μmol g$^{-1}$, respectively) and of a PAL reference sample exhaustively washed with methanol containing 1% 1.0 mol dm$^{-3}$ HCl determined from N_2 adsorption isotherms by the BET (Brunauer et al., 1938) and BJH (Barrett et al., 1951) methods, respectively. Table 2 also indicates the surface areas of the micropores (S_{micro}), the external surface areas (S_{ext}), the micropore volumes (V_{micro}) and the sum of meso- and macropore volumes...
(V_{\text{meso+macro}}) estimated by the t-plot method (Lippens and de Boer, 1965). For FL1/PAL, the reduction in surface area was primarily due to the decrease in the external area S_{\text{ext}}, while FL2/PAL exhibited decreases in both the external and micropore surface areas and in the accessible pore volumes.

Table 2: Surface areas and pore volumes of acid-washed PAL, FL1/PAL = 72 and FL2/PAL = 33.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} / m2g$^{-1}$</th>
<th>S_{micro} / m2g$^{-1}$</th>
<th>S_{ext} / m2g$^{-1}$</th>
<th>V_{micro} / cm3g$^{-1}$</th>
<th>$V_{\text{meso+macro}}$ / cm3g$^{-1}$</th>
<th>V_{tot} / cm3g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALa</td>
<td>137</td>
<td>21</td>
<td>116</td>
<td>0.011</td>
<td>0.475</td>
<td>0.486</td>
</tr>
<tr>
<td>FL1/PAL</td>
<td>126</td>
<td>22</td>
<td>104</td>
<td>0.011</td>
<td>0.462</td>
<td>0.473</td>
</tr>
<tr>
<td>FL2/PAL</td>
<td>126</td>
<td>15</td>
<td>111</td>
<td>0.008</td>
<td>0.420</td>
<td>0.428</td>
</tr>
</tbody>
</table>

a after washing with HCl-acidified methanol.

3.3. Spectroscopic and Photophysical Studies

FTIR spectra of PAL clay and of the FL1 and FL2 derived hybrid pigments were recorded in the region from 4000 cm$^{-1}$ to 500 cm$^{-1}$ (Figure S4 of the Supplementary Material). The raw clay exhibits absorption bands in the range 3000-3600 cm$^{-1}$, along with a band at 1654 cm$^{-1}$, corresponding respectively to the stretching and bending vibrations of water molecules (coordinated and zeolitic) (Frost et al., 2010; Giustetto and Wahyudi, 2011; Fan et al., 2014; Zhang et al., 2015b; Zhang et al., 2015c, 2015d). The region 3000-3600 cm$^{-1}$ also includes contributions from the OH-stretching vibrations of Mg/Al-OH groups (Frost et al., 2010; Zhang et al., 2015a; Zhang et al., 2015d). The band at 3615 cm$^{-1}$ corresponds to Al-OH stretching (Frost et al., 2010; Zhang et al., 2015b; Zhang et al., 2015d) and/or Si-OH stretching (Giustetto and Wahyudi, 2011). Bands in the range from 975 to 1196 cm$^{-1}$ are attributed to Si-O vibrations (Frost et al., 2010; Zhang...
et al., 2015b; Zhang et al., 2015c) and the weak band at 797 cm\(^{-1}\) is characteristic of quartz impurities (Frost et al., 2010; Zhang et al., 2015b). In the infrared spectra of the FL/PAL samples, additional bands characteristic of FL cations were detected in the range of 1200-1600 cm\(^{-1}\) (Figure 1). In particular, the absorption bands at 1356 cm\(^{-1}\) and 1352 cm\(^{-1}\) for FL1/PAL and FL2/PAL samples, respectively, correspond to C-O-C stretching. The intensities of the FL bands are quite weak because of the relatively small amount of flavylium cation in relation to clay and exhibit hypsochromic shifts compared to the FL cation salts, reflecting the interactions between FL and PAL.

Figure 1. Infrared spectra of PAL, FL1, FL2, FL1/PAL (72 µmol) and FL2/PAL (33 µmol) in the range 1200-1600 cm\(^{-1}\). Note: The broad peak at 1400 cm\(^{-1}\) is an impurity in the KBr used.

UV-vis absorption spectra of FL1 and FL2 in 1% 1.0 mol dm\(^{-3}\) HCl/methanol solution present absorption maxima at 478 and 465 nm, respectively (Figures 2a and 2b). The UV-vis-DR spectra of the hybrid pigments in the same Figures exhibit a small red
shift from 478 nm to around 492 nm for FL1, and 465 nm to 470 nm for FL2. Spectral
shifts of this type have been attributed to the effect of electrostatic interactions between
organic molecules and the inorganic substrate (Kohno et al., 2008a, 2009) or to the acidity
of the inorganic substrate (Kohno et al., 2008b). Although aggregates are relatively
common for the adsorption of dyes on clays (Valandro et al., 2015, 2017), the spectra did
not present any evidence of the presence of FL aggregates, indicating that the washing
step as part of the adsorption procedure efficiently removed excess FL cations that might
participate in aggregate formation.

Figure 2. UV-vis and UV-vis-DR spectra (Kubelka-Munk mode) of (a) FL1 and
FL1/PAL, and (b) FL2 and FL2/PAL samples.

Figure 3 shows the fluorescence excitation and emission spectra of the hybrid
pigments FL1/PAL and FL2/PAL, together with those of FL1 and FL2 in 1% 1.0 mol dm⁻³
HCl/methanol solution. In 1% 1.0 mol dm⁻³ HCl/methanol solution, FL1 presented a
broad fluorescence emission band with a maximum around 577 nm and FL2 a maximum
at 509 nm. The corresponding fluorescence excitation spectra resemble the absorption
spectra, with maxima at 487 and 468 nm for FL1 and FL2, respectively. The two hybrid
pigments showed emission in the same region as the corresponding FL in solution. For
FL2/PAL, the maximum fluorescence emission was at ca. 525 nm and did not shift
significantly with increasing amount of adsorbed FL. For FL1/PAL, however, the
fluorescence emission maximum underwent a red-shift from 577 to 600 nm with increasing amount of adsorbed FL1. In the case of Auramine O adsorbed on SYn-1 and SAz-1 clays, a decrease in intensity and shift to longer wavelengths of the fluorescence emission with increasing dye adsorption was attributed to H-aggregate formation (Valandro et al., 2015). However, FL/PAL hybrid pigments exhibited no additional absorption bands of the type expected for J- or H-aggregates, suggesting that the apparent shift with increasing adsorbed FL1 is more likely a distortion of the emission spectrum due to reabsorption, i.e., to an inner filter effect. For both solid hybrid pigments, the front-face geometry emission intensity decreased as the amount of adsorbed flavylium cation increased (Figure 3), suggesting self-quenching.

Figure 3. Excitation and emission spectra of (a) FL1 (Ex. 480 and Em. 576 nm) in 1% 1.0 mol dm⁻³ HCl/methanol solution and solid FL1/PAL (Ex. 470 and Em. 576 nm; adsorbed amounts of FL1 are indicated in µmol/g); (b) FL2 (Ex. 467 and Em. 508 nm) in 1% 1.0 mol dm⁻³ HCl/methanol solution and solid FL2/PAL (Ex. 467 and Em. 525 nm; adsorbed amounts of FL1 are indicated in µmol/g) samples.

Time-resolved emission measurements (405 nm excitation; 575 nm emission for FL1/PAL and 525 nm emission for FL2/PAL) indicated fast biexponential decay with
lifetimes (± 15%) of FL1/PAL (0.35 and 1.0 ns with normalized preexponentials of ca. 0.8 and 0.2, respectively) about half those of FL2/PAL (0.6 and 2.0 ns with normalized preexponentials of ca. 0.6 and 0.4, respectively). Steady-state fluorescence anisotropies \(r \) ranged from 0.03-0.05 for FL1/PAL and 0.06-0.07 for FL2/PAL, apparently insensitive to the amount of adsorbed FL. Time-resolved anisotropy measurements showed an extremely fast initial depolarization, within ca. \(\leq 100 \) ps, with a residual anisotropy at long times consistent with that found in the steady-state measurements. This suggests that fast intermolecular energy transfer or migration between FL molecules is the main mechanism responsible for the rapid loss of anisotropy and could also contribute to the decrease in fluorescence intensity with increasing amount of adsorbed flavylium cation.

Wide field fluorescence images (Figure S5 of the Supplementary Material; true color) indicate a homogeneous distribution of adsorbed FL without differentiating between adsorption inside or on the edges of the channels, with the difference in intensities due largely to differences in the focal planes. In agreement with the red shift of the emission seen in the fluorescence spectra, the fluorescence color of the FL1/PAL particles changes with the amount of FL1 adsorbed, as can be seen in Figure S5 of the Supplementary Material. Images recorded by confocal fluorescence microscopy using false-color mapping are shown in Figure S6 of the Supplementary Material. Although these images indicate that the particles are not homogeneous in size or shape, all are strongly fluorescent, with the highest intensities in the regions of the focal plane around the particle core. Unfortunately, the dye loadings were much too high to make single-molecule measurements on isolated particles or fibers (Martínez-Martínez et al., 2011).

3.3. Stability Tests of the Hybrid Pigments
Resistance of the adsorbed dye to extraction with organic solvent and acid is, in essence, intrinsic to the method of preparation of the hybrid pigments. Thus, the flavylium dissolved in acidic methanol were allowed to adsorb by contact with the clay and the resultant materials then washed exhaustively with acidic methanol to remove any readily extractable dye. Although the dyes are also highly soluble in water, water did not extract the dye from either FL1/PAL or FL2/PAL.

The photochemical stability of flavylium cations is usually much better than their thermal stability. Indeed, both the solid pigments and the hybrid pigments showed good photostability, with the color being essentially unaltered by irradiation for 6 h in a solar UV simulator. Thus, adsorption of the dyes onto the clay does not markedly reduce their photostability. On the other hand, there was substantial improvement in the thermal stability of both FL1 and FL2 adsorbed on palygorskite, as has been reported for flavylium cations adsorbed on other types of clay (Kohno et al., 2007, 2010) or protonated zeolites (Kohno et al., 2008a). A temperature of 120 °C. was chosen for the thermal stability tests since temperatures up to 120-150 °C have been used for the thermal analysis sepiolite/indigo and PAL/indigo hybrid materials (Hubbard et al., 2003) and, in the case of PAL (Guggenheim and Koster van Gross, 2001), this temperature is just above the range where most of the weakly adsorbed water has been lost and where the more strongly adsorbed water only begins to be lost. Thus, while both FL1 and FL2 degraded substantially in less than 2 h at this temperature in a vacuum oven, both hybrid pigments largely retained their characteristic colors (Table 3 and Figures S7-S9 and Tables S1 and S2 of the Supplementary Material) after 24 h under these conditions.

Table 3. CIELAB color coordinates for the hybrid pigments before and after heating at 120 °C. for 24 h.
<table>
<thead>
<tr>
<th>Samples</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL1/PAL = 72</td>
<td>Before</td>
<td>55.8438</td>
<td>50.5605</td>
</tr>
<tr>
<td></td>
<td>heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL1/PAL = 72</td>
<td>After 24 h at 120 °C.</td>
<td>51.1756</td>
<td>43.4934</td>
</tr>
<tr>
<td>FL2/PAL = 33</td>
<td>Before heating</td>
<td>73.6264</td>
<td>17.4510</td>
</tr>
<tr>
<td>FL2/PAL = 33</td>
<td>After 24 h at 120 °C.</td>
<td>60.3541</td>
<td>28.2977</td>
</tr>
</tbody>
</table>

In aqueous solution, both FL1 and FL2 undergo hydration above about pH 3 to form the hemiacetal (B), followed by ring-opening tautomerization to form the cis-chalcone (ZC) and then slow isomerization to the trans-chalcone (EC) (Held et al., 2016). The 7-hydroxy group of FL2 can also deprotonate at slightly higher pH, resulting in the conjugate base (A); the corresponding equilibria are shown for FL2 in Scheme S1 of the Supplementary Material. Spectra of FL1 or FL2 registered after 1 h in pH = 8.5 phosphate buffer solution and of the hybrid pigments after immersion for 24 h in pH = 9 phosphate buffer solution are shown in Figure 4. For FL1 a new band appeared around 380 nm corresponding to a mixture of B, ZC and EC, while FL2 presented two new bands, one at around 490 nm assigned to a conjugate base formed by deprotonation of the hydroxyl group of one or more of the species resulting from the hydration-induced equilibria. The spectra of FL1/PAL and FL2/PAL also showed two bands at longer wavelength, one in the region of the adsorbed cation and the other in the same regions as FL1 and FL2 in solution at similar alkaline pH.
Figure 4. Absorbance and diffuse reflectance spectra (Kubelka-Munk mode) for (a) FL1 and FL1/PAL and (b) FL2 and FL2/PAL. The absorbance spectra were collected for FL1 and FL2 incubated for 1 h in pH 8.5 solution, and the UV-vis-DR spectra were collected after FL1/PAL and FL2/PAL were immersed for 24 h in pH 9 solution, centrifuged and dried.

Figure S10 of the Supplementary Material illustrates the impact of the basic aqueous medium on the color of the hybrid pigments before and after immersion at pH 9 and Table S3 of the Supplementary Material shows the CIELAB color coordinate data. Although the color of FL1/PAL became less intense upon immersion in pH 9 aqueous solution, it still showed an attractive color compared to FL1 at the same pH, indicating that the adsorption process made it less prone to hydration. However, FL2/PAL changed color completely, indicating that the adsorption process did not prevent deprotonation of a significant fraction of the adsorbed FL2 molecules. In both cases, the dye did not leach from the clay and the color changes were reversible upon acidification of the medium, indicating chemical stability under these conditions.

3.5 The dye-clay interaction

Since flavylium cations are highly soluble in methanol, the exhaustive washing with acidic methanol should remove any excess or weakly physiosorbed dye, leaving only strongly bound dye. This points to ion exchange as potentially the most important mode
of interaction of these cationic dyes with palygorskite. In this regard, the final amounts
of the flavylium cations adsorbed (Table 1) were all well below the cation exchange
capacity (CEC) values reported for the PFl-1 Source Clay palygorskite utilized in this
work: 175 (Borden and Giese, 2001) and 165 (Li et al., 2003) and, after a partial
purification, 140 µmol g⁻¹ (Shariatmadari et al., 1999). Nonetheless, because all five of
the initially tested dyes are cationic, ion exchange alone cannot explain the marked
differences in affinity for the clay. Thus, the presence of a methyl group at the 4 position
of the flavylium chromophore of FL3 and FL5 substantially reduced the net adsorption
and, in the case of FL4, the presence of an additional hydroxyl group at position 5 of the
chromophore completely eliminated its adsorption after washing (Table 1). Indeed, as
shown in Figure 5 (See Figure S11 in the Supplementary Material for a color version),
the additional methyl group makes these compounds too wide to insert into the tunnels or
external grooves of PAL. However, the two compounds without the 4-methyl group could
insert partially, though not totally into the tunnels and/or interact with the open grooves
on the external surface. Because FL2 is slightly smaller than FL1, it should fit into the
tunnels somewhat better than FL1. This is consistent with the surface area and pore
volume measurements (Table 2), which suggest a preference of FL1 for the external
grooves and of FL2 for both external grooves and partial insertion into tunnels.
Several studies have shown that the cationic form of anthocyanins and flavylium ions can be selectively stabilized aqueous solution by incorporating them into anionic micelles (Lima et al., 2002; Quina et al., 2009) or by inclusion in supramolecular complexes (Held et al., 2016). Because the apparent hydration constant of FL1 (pK_h, or the pH at which half of the cation form is hydrated) is 3.0 ± 0.3 (Held et al., 2016), solutions of FL1 in acetate buffer at pH 4, 5 or 6 are nearly colorless (Figures S12-S14 of the Supplementary Material), reflecting the almost complete conversion of the flavylium cation form of FL1 to the hydrated species. Upon addition of PAL to these solutions, the suspended clay gradually acquired the red color of the adsorbed FL1 cation as a function of time, indicating the conversion of the hydrated forms in solution to the adsorbed cationic form on the clay. If only the cationic form adsorbed from solution onto the clay, there should be a clear difference in the apparent rates of adsorption at these three distinct
pH values due to the large pH-dependent differences in the equilibrium concentration of this form. However, the rates of appearance of the coloration were qualitatively very similar at pH 4 and pH 5, but clearly much faster than at pH 6. Likewise, the maximum intensity of the color at long times (2 weeks) was similar for the two lower pH values, and much more intense than at pH 6 (Figures S12-S14 of the Supplementary Material). Indeed, this strongly suggests that it is the hydrated forms that adsorb on PAL under these conditions and that they are subsequently converted to the cationic form by interaction with the more highly acidic sites of the clay with effective pK\textsubscript{a} around pH 5-5.5 (*vide supra*).

4. Conclusions

Simple electrostatic interactions are incompatible with the observed differences in adsorption of FL cations on PAL. The adsorption was particularly inefficient for FL cations bearing a 4-methyl group, consistent with steric inhibition of interaction with the palygorskite tunnels or external grooves as the major contributor to differences in adsorption. Adsorption on PAL stabilized the cationic form of the flavylium cations FL1 and FL2 against hydration to at least pH 5, apparently reflecting the participation of the more highly acidic sites on the PAL surface. The photochemical stability was retained and the chemical and thermal stabilities of the cation form of FL1 and FL2 were substantially improved by adsorption on PAL, pointing to flavylium cations of this type as promising chromophores for the development of novel fluorescent hybrid pigments with attractive colors.
Acknowledgements

The authors thank the CNPq (F.H.Q. Universal grant 408181/2016-3), INCT-Catálise, and NAP-PhotoTech for the support, the CNPq for a research productivity fellowships (F.H.Q. and M.H.G.), and CAPES for graduate fellowships (G.T.M.S. and C.P.S.). Researchers at UVic thanks NSERC (RGPIN-2017-04458) for funding and CAMTEC for the use of shared facilities. The authors thank Josué M. Gonçalves for assistance in determining the X-ray diffractograms and Dr. Thiago Lewis Reis Hewer, Dept. of Chemical Engineering, Polytechnic School, USP, for performing the N\textsubscript{2} sorption measurements.

References

Kohno, Y., Kinoshita, R., Ikoma, S., Yoda, K., Shibata, M., Matsushima, R., Tomita, Y.,

Li, Z., Willms, C. A., Kniola, K. 2003. Removal of anionic contaminants using surfactant-

Shariatmadari, H., Mermut, A. R., Benke, M. B. 1999. Sorption of selected cationic and...
neutral organic molecules on palygorskite and sepiolite. Clays Clay Miner. 47, 44-53.

