INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600
C*-Algebras of Sofic Shifts

by

Jonathan Niall Samuel

B.Sc. University of Saskatchewan, 1993
M.Sc. Dalhousie University, 1995

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mathematics and Statistics. We accept this dissertation as conforming to the required standard

Dr. Ian Putnam, Supervisor (Department of Mathematics)

Dr. Chris Bose, Departmental Member (Department of Mathematics)

Dr. John Phillips, Departmental Member (Department of Mathematics)

Dr. William Wadge, Outside Member (Department of Computer Science)

Dr. David Pask, External Examiner (Department of Mathematics, University of Newcastle, Australia)

©Jonathan Niall Samuel, 1998
University of Victoria
All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without permission of the author.
Abstract

This Dissertation shows how the theory of C*-algebra of graphs relates to the theory of C*-algebras of sofic shifts. C*-algebras of sofic shifts are generalizations of Cuntz-Krieger algebras [8]. It is shown that if $X$ is a sofic shift, then the C*-algebra of the sofic shift, $\mathcal{O}_X$, is isomorphic to the C*-algebra of a directed graph $E$, $\mathcal{C}^*(E)$. The graph $E$ is shown to be the well known past set presentation of $X$ constructed in [13].

We focus on the consequences of this result: In particular uniqueness of the generators of $\mathcal{O}_X$, pure infiniteness, and ideal structure of the algebra $\mathcal{O}_X$. We show the existence of an ideal $I \subset \mathcal{O}_X$ such that when we form the quotient, $\mathcal{O}_X/I$, it is isomorphic to $\mathcal{C}^*(F)$, and $F$ is the left Krieger cover graph of $X$ – a well known, canonical graph one can associate with a sofic shift. The dual cover, the right Krieger cover, can also be related to the structure of $\mathcal{O}_X$, and we illustrate this relationship.

Chapter 6 shows what happens when we label a directed graph $E$ in a left resolv­ing way. When the graph $E$ and the labeling satisfy certain technical conditions, we can generate a C*-algebra $\mathcal{L}_X \subset \mathcal{C}^*(E)$, with $\mathcal{L}_X \cong \mathcal{O}_X$ provided that $X$ an irreducible sofic shift.
Examiners:

Dr. Ian Putnam, Supervisor (Department of Mathematics)

Dr. Chris Bose, Departmental Member (Department of Mathematics)

Dr. John Phillips, Departmental Member (Department of Mathematics)

Dr. William Wadge, Outside Member (Department of Computer Science)

Dr. David Pask, External Examiner (Department of Mathematics, University of Newcastle, Australia)
Table of Contents

Abstract \hspace{1em} ii

List of Figures \hspace{1em} vii

Acknowledgments \hspace{1em} viii

Dedication \hspace{1em} ix

Chapter 1. Shift Spaces and Sofic Shifts \hspace{1em} 1
  1.1. Introduction \hspace{1em} 1
  1.2. Shift Spaces: Definitions and Examples \hspace{1em} 6
  1.3. The Category of Shift Spaces \hspace{1em} 8
  1.4. Directed Graphs and SFT’s \hspace{1em} 10
  1.5. Labeled Graphs and Sofic Shifts \hspace{1em} 12
  1.6. The Follower Set and Predecessor Set Presentations \hspace{1em} 15
  1.7. The Future and Past Set Presentations \hspace{1em} 18
  1.8. Follower and Predecessor sets of Labeled Graphs \hspace{1em} 21
  1.9. Properties of Follower Sets \hspace{1em} 23

Chapter 2. C*-algebras of a Shift Spaces \hspace{1em} 27
  2.1. The Fock Space Construction for a Shift Space C*-algebra \hspace{1em} 27
  2.2. Summary of the Structure of $\mathcal{O}_X$ \hspace{1em} 30
  2.3. Exploring the AF-Core \hspace{1em} 32
  2.4. The Universal Property of $\mathcal{O}_X$ \hspace{1em} 34


Table of Contents

2.5. The Failure of the Groupoid Constructions 39

Chapter 3. $\mathcal{O}_X$ and Graph C*-algebras 42

3.1. The Universal C*-algebra of a Graph 42

3.2. Uniqueness and Pure Infiniteness of $C^*(E)$ 45

3.3. The Connecting Maps as Matrices 46

3.4. That $\mathcal{O}_X$ Equals $C^*(E_A)$ 50

3.5. The Perron-Frobenius Operator as a Cover for a Sofic Shift 54

3.6. Uniqueness for $\mathcal{O}_X$ in Terms of $C^*(E)$ 56

3.7. Pure Infiniteness of $\mathcal{O}_X$ in Terms of $C^*(E)$ 59

Chapter 4. The Ideal Structure of $\mathcal{O}_X$ 61

4.1. The Gauge Invariant Ideals for $\mathcal{O}_X$ 61

4.2. The Gauge Invariant Ideals for Sofic Shifts 64

4.3. Equality of the AF-subalgebras 67

Chapter 5. The Structure of $\mathcal{O}_X$ for Sofic Shifts 70

5.1. The Presentation $\Sigma_A$ and the Past Set Cover 71

5.2. Reducing $\Sigma_A$ to the Left Krieger Cover 74

5.3. The Minimal Projections and the Right Krieger Cover 78

5.4. The Structure of $\mathcal{O}_X$ for AFT's 87

5.5. The Structure of $\mathcal{O}_X$ for Reducible $X$ 91

Chapter 6. Generating $\mathcal{O}_X$ from Left Resolving Labelings 93

6.1. Left-Resolving Labelings and Graph C*-algebras 93

6.2. More on the Left Krieger Cover Algebra 96

6.3. The $\mathcal{O}_X$ to $\mathcal{L}_X$ Isomorphism 97

6.4. The Factor Property and the Left Krieger Cover 101
Table of Contents

6.5.  The Follower Set and the Range Map 102

Chapter 7.  Examples of $O_X$ for Sofic $X$ 105

7.1.  The Even shift 105

7.2.  The Degree 3 Charge Constrained Shift 109

7.3.  The AFT of Figure 1.5.2 114

7.4.  A Non-AFT 116

7.5.  The Failure of the Converse of Proposition 5.4.4 118

Bibliography 120
### List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.1</td>
<td>Two different presentations of the even shift</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2</td>
<td>A non-left resolving Krieger cover of a sofic shift</td>
<td>15</td>
</tr>
<tr>
<td>1.6.1</td>
<td>The follower set presentation of the even shift</td>
<td>17</td>
</tr>
<tr>
<td>1.6.2</td>
<td>The right (and left) Krieger cover of the even shift</td>
<td>18</td>
</tr>
<tr>
<td>1.6.3</td>
<td>The right Krieger cover of the degree 3 charge constrained shift</td>
<td>18</td>
</tr>
<tr>
<td>1.9.1</td>
<td>A graph that presents only a one-sided sofic shift</td>
<td>24</td>
</tr>
<tr>
<td>6.5.1</td>
<td>A left resolving presentation of the even shift.</td>
<td>104</td>
</tr>
<tr>
<td>7.1.1</td>
<td>A modified even shift</td>
<td>108</td>
</tr>
<tr>
<td>7.3.1</td>
<td>The Perron-Frobenius presentation of a degree 2 AFT</td>
<td>115</td>
</tr>
<tr>
<td>7.4.1</td>
<td>A non-AFT presentation</td>
<td>116</td>
</tr>
<tr>
<td>7.5.1</td>
<td>A counter-example to proposition 5.4.4</td>
<td>119</td>
</tr>
</tbody>
</table>
Acknowledgments

The author wishes to thank the following people for their helpful discussions. Alex Kumjian, Iain Raeburn, David Pask, Teresa Bates. Thanks to Ian Putnam for all his help and suggestions. In addition, thanks to the staff at the Department of Mathematics at the University of Newcastle, Australia, where I spent some time doing this research.

Thanks to my family and friends for all their support these years. Special thanks to my brother, Adrian, who was always willing to take a break from the rat-race and head out with a backpack into the back country of Beautiful British Columbia. Finally I wish to thank Paul Wilson because he wished to be thanked, and he was a good friend when the going got tough.
Dedication

For my wife, Teresa.
CHAPTER 1

Shift Spaces and Sofic Shifts

1.1. Introduction

Symbolic Dynamics can be described as studying infinite strings of symbols obtained from a finite alphabet. Under certain conditions, collections of these infinite strings of symbols form a mathematical class called a shift space. The study of shift spaces has long been of interest to mathematicians, computer scientists, physicists and engineers. It's the study of "coding", and can be used to "code" more difficult problems into simpler ones, or as a practical use, to code data for more efficient means of storage, transmission, and retrieval. In the realm of symbolic dynamics, the sofic shifts have been a very manageable class in this study ("sofic" is derived from the Hebrew word for "finite"). Introduced by Weiss in [25], a sofic shift is a quotient of a even simpler shift space, a shift of finite type, or SFT.

The SFT is one of the simplest shift spaces. Suppose one had a finite set of "states" and certain allowable transitions from one state to another. One forms an infinite string of these states with the rule that the sub-string 'IJ' can appear in the infinite string if and only if the transition from state 'I' to state 'J' is allowed. The collection of all allowable infinite strings forms an SFT. As a topological space, it is a closed subspace of the infinite product of all states. To construct such a space, you do need the assumption there are no "dead ends", i.e., every state has a transformation to another state. To construct a sofic shift, one "labels" each of the distinct states with an alphabet, and rather than looking at infinite strings
of the states, look at the infinite string of the corresponding labels for the states. Certainly, if all states are labeled distinctly, you still have an SFT, however, if two states share a common label, there is a chance you no longer have an SFT. In terms of topological spaces, a sofic shift is a quotient space of an SFT, with the "labeling" map forming the quotient map.

There is an intimate relationship between SFT's, matrices, and directed graphs; giving more power to analyze these shift spaces. Roughly speaking, if you have a SFT with \( n \) states, you form an \( n \times n \) matrix \( A \) with the property that \( A(i,j) = 1 \) if there is a transition from state 'i' to state 'j'. Otherwise \( A(i,j) = 0 \). As a directed graph, you have \( n \) vertices, and an edge from vertex \( i \) to vertex \( j \) if and only if \( A(i,j) = 1 \) (equivalently, the transition from state \( i \) to state \( j \) is allowed). The directed graph gives a visual representation of the allowable transitions. The structure of the graph can tell one much about the structure of the shift space one is studying. Furthermore, as directed graphs are associated with \( n \times n \) matrices with entries in the positive integers, one could easily obtain information about the shift space by looking at the corresponding matrix.

In the mid 1970's and 1980, Fischer [10] and Krieger [13] made the discovery that sofic shifts have a canonical SFT that has several nice properties. Much of the information about the sofic shift can be obtained by looking at the structure of this SFT.

It was not long after that Cuntz and Krieger [8] discovered that for shifts of finite type there was a \( C^* \)-algebra (a norm-closed \( * \)-sub-algebra of bounded linear operators on a Hilbert space) one could obtain from the SFT based on the structure of its corresponding matrix. A very simple view of how this is done can be described as follows. If \( A \) is an \( n \times n \) matrix with entries in \( \{0,1\} \), and \( \mathcal{H} \) is an infinite dimensional Hilbert space with orthonormal basis \( \{e_i\}_{i=1}^{\infty} \), partition this basis into
1.1. Introduction

$n$ disjoint subsets of infinite cardinality, say $\{B_i\}_{i=1}^n$. For each $1 \leq i \leq n$, look at all those $j$ with the property that $A(i,j) = 1$, and form the direct sum

$$B_j^i := \bigoplus_{\{j : A(i,j) = 1\}} \text{span}(B_j).$$

Because $\text{span}(B_i)$ and the above direct sum are both infinite dimensional, there is a linear isomorphism between the two spaces. Call this isomorphism $S_i : B_j^i \rightarrow \text{span}(B_i)$.

The isomorphism $S_i$ as an operator on $\mathcal{H}$ is a special kind of operator known as a partial isometry. When $S_i$ is restricted to its domain and its adjoint $S_i^*$ is restricted to the range of $S_i$; the adjoint becomes the inverse of $S_i$. This means that both $S_i^*S_i$ and $S_iS_i^*$ are projections as operators on $\mathcal{H}$; the first projecting onto $B_j^i$, the second projecting onto $\text{span}(B_i)$. Cuntz and Krieger generated a C*-algebra using all the constructed isometries $S_i$, and related them back to the matrix $A$ with the now famous Cuntz-Krieger relations:

$$S_i^*S_i = \sum_{j=1}^n A(i,j)S_jS_j^*.$$

What is surprising is that the algebra generated is independent of the choice of how one partitions the orthonormal basis (as long as each partition is infinite dimensional), and is independent of the choice of partial isometry chosen, provided that certain technical conditions on the matrix are satisfied (one being that your matrix is not a permutation matrix). Because these partial isometries are related to an $n \times n$ matrix $A$, which codes transitions between “states” (in this case, the “states” are closed subspaces of $\mathcal{H}$), it seemed natural to view this algebra as “the C*-algebra of the SFT generated by the matrix $A$”. That is exactly what they did, showing many relationships between the structure of the C*-algebra and the corresponding SFT.
1.1. Introduction

Because $n \times n$ matrices related well with directed graphs, in the 1990’s A. Kumjian et. al [2, 15, 14] generalized the Cuntz-Krieger algebras to make a C*-algebra of a directed graph; the graph was allowed to be infinite, and/or was allowed to have vertices that emit no edges. In a different direction, K. Matsumoto [18, 20] generalized the Cuntz-Krieger algebras to algebras of general shift spaces. This allowed one to build a C*-algebra of a sofic shift. In spite of the difference in philosophy, the underlying strategy of constructing both C*-algebras was the same: that is, try to find a set of partial isometries on a Hilbert space that somehow captured the structure of the graph (or shift space) in which one was interested, and generate a C*-algebra from these partial isometries.

So if all these intimate relationships hold between SFT’s, matrices, sofic shifts, labeled graphs, etc., what happens at the level of C*-algebras? The purpose of this dissertation is to explore these relationships. First, we show that the C*-algebra of a sofic shift, $O_X$ is also a C*-algebra of a certain directed graph $E$, denoted $C^*(E)$. We then use this fact to get theorems regarding the uniqueness of the generators of the sofic shift C*-algebra, and also whether or not this C*-algebra is purely infinite.

Both C*-algebras of sofic shifts, and C*-algebras of graphs admit a natural gauge action of the unit circle $\mathbb{T}$. We prove that the gauge invariant ideals of $O_X$ are precisely the same as the gauge invariant ideals of $C^*(E)$. Hence, the gauge invariant ideal structure of $O_X$ is entirely dependent on the structure of the the graph $E$.

The graph $E$ is shown to be the past set cover of the sofic shift (the past set cover was constructed in [13]). This is one of the natural, left resolving graphs one can associate with a sofic shift. The past set cover always has a sub-graph that is minimal in the sense that it has the fewest number of vertices of all graphs that present the sofic shift (see [10, 13, 16]). We show the analogy of this fact in the theory of the C*-algebras: Every sofic shift C*-algebra has an ideal $I$ such that when
1.1. Introduction

you form the quotient C*-algebra, \( \mathcal{O}_X/I \), you get the C*-algebra of this minimal graph. This ideal is trivial precisely when the past set cover and left Krieger cover coincide.

The past set graph has a dual graph called the future set cover, we show how the structure of \( \mathcal{O}_X \) relates to this future set cover also. We then apply this theory to a specific sub-class of sofic shifts called the shifts of Almost Finite Type (AFT) — introduced by B. Markus in [17]. When the sofic shift is an AFT, it is proved that \( \mathcal{O}_X \) always has a non-trivial ideal.

In the final part of this dissertation, we try to show a “converse” to all the work demonstrated so far. Instead of starting with a C*-algebra of a sofic shift and getting a C*-algebra of a graph, what happens if we take a C*-algebra of a graph, \( E \), and try to make a C*-algebra of a sofic shift? We attempt to do this by labeling the edges on the graph. How we label the edges allows us to use the partial isometries that generate \( C^*(E) \) to make other partial isometries that behave more like the C*-algebra of the sofic shift that the labeling presented. Under the right conditions, we can show that the C*-algebra of the sofic shift can be recovered from the C*-algebra of the graph with which we started (possibly as a sub-algebra).

This dissertation is divided into seven main chapters. Chapter one introduces the reader to shift spaces (SFT’s and sofic shifts in particular) and their relationship with directed graphs and matrices. Chapter two covers the constructions of Matsumoto for a C*-algebra of a sofic shift. Chapter three covers the constructions of A. Kumjian et. al of a C*-algebra of a directed graph, and also establishes the relationship between the two algebras. Chapter four covers the ideal structure of the algebras. Chapter five shows the structure of the directed graph, and the labeled graph which the C*-algebra of the sofic shift is related. In chapter six, we look at what happens if you start with a labeled graph and attempt to generate a
C*-algebra of a sofic shift from it. Finally chapter seven shows many examples that illustrate the theory developed.

1.2. Shift Spaces: Definitions and Examples

Here, we give a brief introduction to the theory of shift spaces. More details can be found in any book on symbolic dynamics, for example [16].

Let $\Sigma = \{1, \ldots, n\}$ be a finite symbol set. We let $Y = \prod_{i=-\infty}^{+\infty} \Sigma$ and $Y^+ = \prod_{i=1}^{+\infty} \Sigma$ with the product topology. Both $Y$ and $Y^+$ are compact, totally disconnected (or zero-dimensional) topological spaces and are referred to as the two-sided (or one-sided) full shift on $n$ symbols respectively.

Define a map $\sigma : Y \rightarrow Y$, by $(\sigma(x))_i = x_{i+1}$ for $x = (x_i)_{i=-\infty}^{+\infty}$. The map $\sigma$ is defined similarly on the one-sided shift. In both cases, $\sigma$ is continuous. It is a homeomorphism on the two-sided shift.

Call a subspace $X \subseteq Y$ $\sigma$-invariant if $\sigma(X) = X$. A (two-sided) shift space $X$ is a closed, $\sigma$-invariant subspace of $Y$ (if the space is $Y^+$, $X$ is referred to as a one-sided shift space).

Assume $X$ is a shift space on a finite symbol set $\Sigma = \{1, \ldots, n\}$. We say $\mu = \mu_1 \mu_2 \cdots \mu_l$ with $\mu_i \in \Sigma$ is a word in $X$ if there is an $x \in X$ with $x_i = \mu_1, \cdots, x_{i+l-1} = \mu_l$ for some $i$. If $\mu = \mu_1 \cdots \mu_l$, let by $|\mu| = l$ denote the number of symbols in $\mu$, which we will refer to as the length of $\mu$. Let $B_l(X)$ denote the set of all words of length $l$, and $B(X) = \bigcup_{l=1}^{+\infty} B_l(X)$. If $\mu, \nu \in B(X)$, then we denote their concatenation as $\mu \nu$. Note that $\mu \nu$ must be an allowable word in $X$ in order to allow a concatenation. We denote by $\mu^n$ the word $\mu$ repeated $n$ times.

For every $\mu = \mu_1 \mu_2 \cdots \mu_n \in B(X)$ define the cylinder set of $\mu$ at coordinate $k$ as

$$U_\mu^k = \{x \in X : x_k = \mu_1, \ldots, x_{k+n} = \mu_n\}$$
1.2. Shift Spaces: Definitions and Examples

It is well known that the cylinder sets are open, and form a basis for the product topology on $X$ (inherited from the full shift $Y$). The convention is taken that the cylinder set of the empty word is all of $X$. The map $\sigma$ sends cylinder sets to cylinder sets. If the shift is one-sided, and $|\mu| > 1$, $\sigma$ will map $U_\mu^1$ to the cylinder set $V_\nu^1$, where $\nu$ is the word obtained from $\mu$ by deleting the first symbol. If $|\mu| = 1$, there is a chance that $\sigma(U_\mu^1)$ is not an open set, and we shall investigate this further in chapter 2.

We say that a shift space $X$ is irreducible if and only if for every $\mu, \nu \in B(X)$, there is a $\omega \in B(X)$ with $\mu\omega\nu \in B(X)$. For a shift space $X$ we say $x \in X$ is periodic if $\sigma^n(x) = x$ for some $n \in \mathbb{N}$.

It can be shown that all shift spaces occur as follows. Let $F$ be a collection of words in the full-shift $Y$. Define a subshift $X$ as follows: if $y \in K$, then $y \in X$ if and only if no word occurring in $y$ occurs in $F$. If one can describe the shift space, $X$, with a finite set $F$, then $X$ is referred to as a shift of finite type, or SFT.

Here are a few examples of two-sided shift spaces.

**Example 1.2.1:** Let $A = A(i,j)$ be an $n \times n$ matrix with entries in zero and one. Define a subshift $X$ as follows:

$$X = \{x \in \prod_{i \in \mathbb{Z}} \{1, \ldots, n\} : A_{x_i, x_{i+1}} = 1 \text{ for all } i\}.$$ 

This is a special class of SFT called a Markov Shift.

**Example 1.2.2:** Let $E = (E^0, E^1)$ be a directed graph with $E^0$ the vertex set and $E^1$ the edge set. Suppose $E^0$ is finite. Define a subshift $X$ with symbol set $E^0$ as follows:

$$X = \{x \in \prod_{i \in \mathbb{Z}} E^0 : \forall i \in \mathbb{Z}, \exists e \in E^1, \text{ connecting } x_i \text{ to } x_{i+1}\}.$$ 

Then $X$ is a SFT called the vertex shift of a graph.
1.3. The Category of Shift Spaces

We will discuss these examples in more detail in the final section of this chapter.

**Example 1.2.3:** Let $X$ be the infinite product (using either $\mathbb{N}$ or $\mathbb{Z}$ as an index set) on the symbols 1 and 2 with the following condition: Between any two successive 1’s, there is always an even number of 2’s. This shift space is called the even shift, and it is not a SFT.

**Remark 1.2.4:** If $X$ is a two-sided shift space, there is a natural way of defining a one-sided space from it. Let

$$X^+ = \{(x_i)_{i \in \mathbb{N}} : \text{there exists } y \in X \text{ with } y_i = x_i \text{ for every } i \in \mathbb{N}\}.$$ 

Then $X^+$ is a one sided shift space. For notational convenience, we can do a similar thing for the negative integers and zero (but its not a shift space) by defining

$$X^- = \{(x_i)_{i \in \mathbb{Z}\setminus\mathbb{N}} : \text{there exists } y \in X \text{ with } y_i = x_i \text{ for every } i \in \mathbb{Z}\setminus\mathbb{N}\}.$$ 

So $x^+ \in X^+$ has the form $x_1x_2\ldots$, and $x^- \in X^-$ has the form $\ldots x_{-2}x_{-1}x_0$, and are sometimes referred to as the “heads” and “tails” of an element $x = x^-x^+ \in X$.

1.3. The Category of Shift Spaces

The category of shift spaces has objects $(X, \sigma_X)$ with $\sigma_X$ the shift map and $X$ a shift space. The arrows $f : (X, \sigma_X) \to (Y, \sigma_Y)$ are continuous functions from $X$ to $Y$ such that the following diagram commutes:

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{\sigma_X} & & \downarrow{\sigma_Y} \\
X & \xrightarrow{f} & Y 
\end{array}
$$

Although the definition is abstract, many morphisms in the shift space category occur as $n$-block maps, for some $n \in \mathbb{N}$. An $n$-block map $f : X \to Y$ is defined first
as a map

\[ f : B_n(X) \to B_1(Y), \]

and then for \( x = (x_i)_{i \in \mathbb{Z}}, f(x) \) is defined as

\[ \ldots f(x_0 x_1 \ldots x_n) f(x_1 x_2 \ldots x_{n+1}) \ldots, \]

where \( f(x_0 x_1 \ldots x_n) = y_0 \). A factor map is an \( n \) block map that is onto. Isomorphisms in the category of shift spaces are called conjugacies, and the two spaces are said to be conjugate. Not all conjugacies arise from \( n \)-block maps (see [16, Exercise 1.3.5]).

The following is well known for SFT’s

**Theorem 1.3.1:** (see [16, Chapter 2]) Every SFT is conjugate (through some \( n \)-block map) to a Markov shift.

The SFT’s form a sub-category of the category of shift spaces. It was shown by Weiss in [25] that the largest enveloping category of the sub-category of SFT’s that is closed under quotients was the sofic shifts. We will use this as our definition.

**Definition 1.3.2:** A shift \( (X, \sigma_X) \) is sofic if there exists a SFT \( (Y, \sigma_Y) \) and a quotient map \( \pi : Y \to X \); the space \( Y \) is called a cover for \( X \).

Based on the above definition, SFT’s are trivially sofic (take \( \pi \) to be the identity). We say a sofic shift \( X \) is purely sofic if it is not an SFT. Some examples of (purely) sofic shifts we will use throughout this dissertation include the even shift defined in example 1.2.3, and the degree 3 charge constrained shift, defined below.

**Example 1.3.3:** Let \( n \in \mathbb{N} \) and \( \Sigma = \{+1, -1\} \) be a symbol set. Define the degree \( n \) charge-constrained shift \( X \) as the (one or two sided) subshift with the property that every word in \( B(X) \) has algebraic sum on its symbols no less than \(-n\) and no more than \(n\).
1.4. Directed Graphs and SFT's

An example of a non-sofic shift is the so called context free shift. It is a shift on 3 symbols, 1, 2, 3, with the property that the word $12^m3^k1$ occurs only if $m = k$. There are more non-sofic shifts than sofics. In fact, up to conjugacy, there are uncountably many shift spaces, but only countably many sofic shifts (see [16, Chapter 1]).

1.4. Directed Graphs and SFT's

There is a relationship between directed graphs and shifts of finite type that can be stated as follows. Theorem 1.3.1 tells us that every SFT is conjugate to a Markov shift. A Markov shift can be represented on a finite graph, and we shall see this construction in this section. From a graph theory point of view, this Markov shift is nothing but an “edge shift” on a directed graph.

**Definition 1.4.1:** A (finite) directed graph $E = (E^0, E^1)$ consists of a finite set of $E^0$ of vertices, and a set $E^1$ of edges. There are two maps $r, s : E^1 \rightarrow E^0$ (called the range and source maps respectively) defined as $r(e) = v$ if and only if $v$ is the terminal vertex of the edge $e$, and $s(e) = u$ if and only if $v$ is the initial vertex of the edge $e$.

We present an important example of an SFT obtained from a graph $E$.

**Example 1.4.2:** Let $E = (E^0, E^1)$ be a directed graph. Define a two sided shift

$$X := \left\{ e \in \prod_{i \in \mathbb{Z}} E^1 : r(e_{i-1}) = s(e_i) \right\}.$$ 

Then $X$ is referred to as the edge shift of a directed graph $E$.

Given a graph $E = (E^0, E^1)$ one defines a *path* in the graph as a sequence of $e_i \in E^1, 1 \leq i \leq n$ with the property that $r(e_{i-1}) = s(e_i)$ for $1 < i \leq n$. A *walk* is a path of infinite length, while a bi-infinite walk is a walk indexed by $\mathbb{Z}$ rather then $\mathbb{N}$. The set of walks will form the one-sided edge shift of a graph $E$, and the set of
bi-infinite walks forms the two-sided edge shift for $E$. The set of all paths forms the words for the shift space.

Note that one could define paths and walks using the vertices of the graphs, rather than the edges. We will mainly use edges. A graph whose vertex or edge shift corresponds to a shift space $X$ is called a presentation of $X$.

**Remark 1.4.3:** A vertex $v \in E^0$ is said to be a source if there is no edge $e$ with $r(e) = v$. A sink is a vertex $v$ with no edge $e$ satisfying $s(e) = v$. A vertex is isolated if it is both a source and sink. When dealing with shift spaces on graphs, one can easily remove isolated vertices, and sinks without changing the presentation (see [16, Chapter 2]. For one-sided shifts, sources are possible (see figure 1.9.1). Since we will be working with two-sided shifts, we can assume our presentation has no sources or sinks.

A graph is said to be irreducible if and only if for every pair of vertices $I, J$ there is a path from $I$ to $J$. It is straightforward to check that a edge shift or vertex shift is irreducible if and only if it has an irreducible graph presenting it.

Edge shifts are Markov shifts, so they can be represented as an $n \times n$ matrix $A$ with entries in $\{0, 1\}$. The construction is as follows. For a directed graph $E = (E^0, E^1)$ let $m$ equal the number of vertices in $E$, $n$ the number of edges in $E$, and let $E^1 = \{e_1, \ldots, e_n\}$. Define an $n \times n$ matrix $A$ whose $(i, j)$th entry is:

$$A(i, j) = \begin{cases} 
1 & \text{if } r(e_i) = s(e_j), \\
0 & \text{else}.
\end{cases}$$

It is a straightforward exercise to check that the edge shift $X$ (see example 1.4.2) is conjugate to the Markov shift generated by the matrix $A$ (example 1.2.1). Conversely, one can go from a Markov shift to an edge shift of a directed graph. See [16, Chapter 2] for more.
Matrices that have entries in the non-negative integers can be used to form a directed graph, and vice versa. To go from a directed graph $E = (E^0, E^1)$ to an integer matrix, $B$, define a $m \times m$ (where $m$ is the number of vertices) matrix $B$ whose $(i,j)\text{th}$ entry is:

$$B(i,j) := \text{the number of edges connecting vertex } i \text{ to vertex } j.$$ 

It may well be that $B$ is not a zero-one matrix, but it can be converted to a zero-one matrix as follows: for each non-zero entry in $B(i,j)$, let $\{A^{i,j}\}_{i,j=1}^{B(i,j)}$ be a set of "symbols", $1 \leq i, j \leq m$. Define a transition from $A^{i,j}$ to $A^{k,l}$ if and only if $j = k$. One can check that this is a Markov shift, and is precisely the edge shift of the graph $E$.

To go from a matrix $B$ with non-negative entries to a directed graph, suppose $B$ is $m \times m$. Draw $m$ vertices, and $B(i,j)$ edges from vertex $i$ to vertex $j$. See [16] for more on these relationships.

**Remark 1.4.4:** Throughout this dissertation, we will be referring to a matrix with non-negative integer entries, and its corresponding edge shift. We will denote the edge shift graph corresponding to a non-negative integer matrix $A$ as $E_A$. Conversely, given a directed graph $E$, we shall refer to the corresponding edge matrix as $A_E$.

### 1.5. Labeled Graphs and Sofic Shifts

A *labeling* for a directed graph $E = (E^0, E^1)$ is a (finite) collection of symbols $\Sigma$, and a labeling map $\pi : E^1 \to \Sigma$. We assume that $\pi$ is onto. Given a labeled graph $E = (E^0, E^1, \Sigma, \pi)$ (denoted as $(E, \pi)$ when the label set is known) we can define a sofic shift space $X$ as follows.

$$X := \left\{ (\pi(e_i))_{i=-\infty}^{\infty} : (e_i)_{i=-\infty}^{\infty} \text{ is in the edge shift of } E \right\}.$$
1.5. Labeled Graphs and Sofic Shifts

The symbol set for $X$ is $\Sigma$, and the one block map $\pi : E^1 \to \Sigma$ makes the edge shift of the unlabeled graph a cover for $X$. As with SFT's, we shall refer to the labeled graph as a presentation of the sofic shift $X$. When $X$ is irreducible, there is always an irreducible labeled graph that presents it.

Note that many different labeled graphs can represent the same sofic shift. For instance, figure 1.5.1 exhibits two different graph presentations of the even shift (example 1.2.3).

**Definition 1.5.1:** Let $E = (E^0, E^1, \Sigma, \pi)$ be a labeled graph:

1. $E$ is said to be right resolving if for each vertex in the graph, all the edges leaving that vertex carry different labels. It is said to be left resolving if for each vertex in the graph, all the edges entering that vertex have distinct labels.

2. A vertex of a labeled graph is said to be right (left) resolving if every edge exiting (entering) the vertex has a distinct label.

3. A vertex of a labeled graph is said to be right (left) resolving with respect to label $I \in \Sigma$ if there is only one edge labeled $I$ exiting (entering) that vertex.

A graph that presents a shift $X$ is said to be minimal if it has the fewest number of vertices amongst all graphs that present $X$. Since sofic shifts are quotients of shifts of finite type, which are in turn conjugate to edge shifts of finite graphs, it
must be that the minimal graph for a sofic shift is a finite graph. For irreducible sofics, the minimal cover is unique:

**Theorem 1.5.2:** (see [10]) *If X is an irreducible sofic shift, then any two irreducible, minimal, right (left) resolving graph presentations of X have conjugate edge shifts via a 1-block map. Thus, up to a renaming of the labels, all such graph presentations are the same.*

A corollary to this is that there is a “canonical” SFT that represents the sofic shift; namely, the shift represented by the edge matrix of the minimal, right resolving graph. This is sometimes referred to as the (right) Krieger Cover ([13]), or the (right) Fischer Cover ([10]). The word “right” is used to indicate it is right resolving. The left Krieger (or Fischer) cover is the minimal, left resolving graph. The reason that both Fischer and Krieger get credit names is that both have given explicit (but slightly different) constructions of this cover. However, the above theorem tells us that as minimal covers, they are the same. Fisher [10] was the first to notice uniqueness of the minimal cover; Krieger [13] showed that any morphism between two sofic shifts could be “lifted” to the minimal cover. We will focus on the construction of the Krieger cover in this dissertation.

Note that a minimal, right resolving presentation need not be left resolving, as figure 1.5.2 shows. The graph in figure 1.5.2 presents a sofic shift $X$ and is not left resolving at vertex $b$. However, we shall see later this is the minimal, right resolving graph for $X$.

A **path** on a labeled graph $(E, \pi)$ is a finite sequence of labels, $\mu_1 \ldots \mu_n$ such that there exists a path $w_1 \ldots w_n$ on $E$ with $\pi(w_i) = \mu_i$. We can extend this definition to walks and a bi-infinite walks for labeled graphs. The set of walks forms a one-sided sofic shift space, and the set of bi-infinite walks the two-sided sofic shift. When
1.6. The Follower Set and Predecessor Set Presentations

Figure 1.5.2. A non-left resolving Krieger cover of a sofic shift

We speak of a path on a labeled graph, we shall mean a path in the sense of this definition. A non-labeled graph can be thought of as a graph where every edge has a unique label, so these definitions are generalizations of paths and walks for directed graphs defined previously.

1.6. The Follower Set and Predecessor Set Presentations

The full details of follower set presentation can be found in [16, Chapter 3, Section 3]. For any \( G : X \) we let

\[ F_x(G) = \{ x \in X^+ : \mu x \in X^+ \} \]

be the follower set of \( \mu \) (note that our definition is slightly different to that of [16], but is equivalent). We define an equivalence relation on \( B(X) \), \( \mu \sim \nu \) if and only if \( F_X(\mu) = F_X(\nu) \) A well known result is that for sofic shifts, there are only finitely many follower sets [16, Theorem 3.2.10]. Thus there are finitely many equivalence classes.

If one prefers to look into the past, one can define the Predecessor set of \( \mu \) as

\[ P_X(\mu) = \{ x \in X^- : x\mu \in X^- \}. \]

Like its follower set counterpart, a shift is sofic if and only if the number of predecessor sets is finite.
1.6. The Follower Set and Predecessor Set Presentations

One way of presenting a shift space $X$ on a labeled graph is the so called follower set graph. It is constructed as follows: The vertices of the graph are the $F_X(\mu)$, with $\mu \in B(X)$, and there is an edge labeled $i \in \Sigma$ from $F_X(\mu)$ to $F_X(\nu)$ if and only if $\mu i \in B(X)$ and $F_X(\mu i) = F_X(\nu)$. This is clearly a right resolving graph. The predecessor graph is defined with vertices $P_X(\mu)$ and an edge labeled $i \in \Sigma$ from $P_X(\mu)$ to $P_X(\nu)$ if and only if $i\mu \in B(X)$ and $P_X(\nu) = P_X(i\mu)$. This is clearly a left resolving graph.

**Definition 1.6.1:** A word $\mu \in B(X)$ is said to be magic (or intrinsically synchronizing [16], or finitary [13]) if for every $\nu, \lambda \in B(X)$ satisfying $\nu \mu$, $\mu \lambda \in B(X)$ the word $\nu \mu \lambda \in B(X)$.

**Remark 1.6.2:** Note that any word $\mu$ which contains a magic sub-word is also magic. A shift $X$ is purely sofic if and only if for each $l \in \mathbb{N}$ there is a word $\mu$ with $|\mu| = l$ that is not magic [13, Proposition 4.3].

If a word $\mu$ is magic, then $F_X(\nu \mu) = F_X(\mu)$ for any $\nu \in B(X)$ with $\nu \mu \in B(X)$ (and $P_X(\mu \nu) = P_X(\mu)$ whenever $\mu \nu \in B(X)$). It can be shown that [16, Exercise 3.34, page 85], the sub-graph of the follower set graph with vertices consisting only of magic words forms the minimal right resolving presentation of $X$ hence is the right Krieger cover. That the minimal right resolving presentation is a subgraph follows from remark 1.6.2.

**Example 1.6.3:** Figure 1.5.2 is the minimal, right resolving graph for the sofic shift presented by the labeled edge walks. The follower sets are the vertices $a = F_X(12)$, $b = F_X(01)$ and $c = F_X(0)$.

To obtain the left Krieger cover, we restrict ourselves to all those vertices in the predecessor set cover that are the predecessor sets of magic words.
1.6. The Follower Set and Predecessor Set Presentations

Remark 1.6.4: One may believe the left Krieger cover could be obtained from the right Krieger cover just by reversing the range and source of the edges. If one does this to figure 1.5.2, one certainly gets a left resolving graph; note the one problem: if the left resolving graph must present the same shift, $X$, as the right, then a labeled path on the left resolving graph $e_1e_2\ldots e_n$ would correspond to the word $e_ne_{n-1}\ldots e_1 \in B(X)$. This is the main reason the left Krieger cover is defined "backwards". There is a very special class of shifts where such a reversal will work. The degree zero AFT's.

Definition 1.6.5: 1. A sofic shift is said to be almost finite type (AFT) if the right Krieger cover and left Krieger cover are conjugate as shifts of finite type.

2. An AFT is of degree zero if the right Krieger cover and the left Krieger cover are equal as labeled graphs.

Degree zero AFT's have exactly the same right and left Krieger covers. Equivalently, the right Krieger cover graph is also left resolving (or the left Krieger cover graph is right resolving). A general AFT does not have this property. There are SFT's that are not degree zero AFT's. However, all SFT's are AFT's, and edge shifts are degree zero AFT's.

Example 1.6.6: Figure 1.6.1 shows the follower set presentation for the even shift defined in example 1.2.3. The follower sets are $a = F_X(2)$, $b = F_X(1)$, $c = F_X(12)$.

![Figure 1.6.1. The follower set presentation of the even shift](image)
1.7. The Future and Past Set Presentations

Figure 1.6.2. The right (and left) Krieger cover of the even shift

\[
\begin{array}{ccc}
1 & \rightarrow & 2 \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
b & \rightarrow & c
\end{array}
\]

Figure 1.6.3. The right Krieger cover of the degree 3 charge constrained shift

The magic words are 1 and 12, and Figure 1.6.2 shows its right Krieger cover. It is a degree zero AFT (the graph is also left resolving), so figure 1.6.2 is also the left Krieger cover.

Example 1.6.7: The degree three charge constrained shift has Krieger cover as shown in figure 1.6.3. The magic words \( \mu_1 = -1 - 1 - 1, \mu_2 = -1 - 1 - 1 + 1, \mu_3 = +1 + 1 + 1 - 1 \) and \( \mu_4 = +1 + 1 + 1 \). The vertices are the follower sets of these words. Because this graph is also left resolving, it is a degree zero AFT.

1.7. The Future and Past Set Presentations

There is a slightly different view of the construction of the right and left Krieger covers which will be of more importance to us. If \( X^+ \) and \( X^- \) denote the one sided shifts defined in remark 1.2.4 of \( X \), we can define, for \( x \in X^- \), the future of \( x \) as

\[ F_X(x) = \{ y \in X^+ : xy \in X \}, \]
and for $y \in X^+$, define the past of $y$.

$$P_X(y) = \{ x \in X^- : xy \in X \}.$$ 

As outlined in [16, Exercise 3.2.8] (see also [13]) a shift space is sofic if and only if the number of futures (pasts) is finite. The future set graph of $X$, as a labeled graph has vertices $F_X(x)$ for $x \in X^-$, and there is an edge labeled $I \in \Sigma$ from $F_X(x_1)$ to $F_X(x_2)$, if and only if $F_X(x_1 I) = F_X(x_2)$. Similarly, the past set graph has vertices $P_X(y)$ for $y \in X^+$ and there is an edge $I \in \Sigma$ from $P_X(y_1)$ to $P_X(y_2)$ if and only if $P_X(I y_2) = P_X(y_1)$. Since the edge shift obtained from the future set graph is a cover of $X$, we will refer to it as the future cover. The past cover is defined similarly.

Like their follower and predecessor counterparts, the future cover is right resolving; the past cover is left resolving. In fact, both the future cover graph and follower set graph have a sub-graph that is exactly the same. Similarly, the past cover and predecessor set graph have a sub-graph that is exactly the same. Since we will be dealing mainly with the past cover graph later, we shall show it for the past.

If $(x_i)_{i=1}^\infty \in X^+$, we say that $x$ is a magic walk if there exists $n \in \mathbb{N}$ with the word $x_1 \ldots x_n$ a magic word. Because magic words have pasts independent of their futures, we see that if $x_1 \ldots x_n$ is a magic word, and $m \geq n$ then

$$P_X(x_1 \ldots x_n) = P_X(x_1 \ldots x_m).$$

If we let $\mu = x_1 \ldots x_n$, then we can conclude that $P_X(x) = P_X(\mu)$. Hence, a predecessor set of a magic walk is precisely the predecessor set of the first magic word obtained from its beginning. It is easily checked that if $P_X(x) = P_X(y)$ and $x$ and $y$ are magic walks, then the magic words $x_1 \ldots x_n$ and $y_1 \ldots y_m$ must have the same predecessor sets.
Conversely suppose $\mu$ is magic. Extend $\mu$ infinitely to the right to make $x = \mu x^+ \in X^+$. Once again, as magic words have pasts independent of their futures, we see that

$$P_X(x) = P_X(\mu).$$

If $\mu, \nu$ are magic words with the same predecessor sets, extending $\mu$ to the right to $x \in X^+$ and $\nu$ to the right to $y^+ \in X^+$ gives us $P_X(x) = P_X(y)$. This sets up a bijective correspondence between predecessor sets of magic words, and past sets of magic walks. Thus, in the past cover, we can regard the predecessor sets of magic walks as predecessor sets of magic words. Since the rules for drawing labeled edges from vertices are exactly the same regardless of whether you use past sets as vertices of predecessor sets of vertices we see that

**Theorem 1.7.1:** For any sofic shift $X$, the left Krieger cover graph is a sub-graph of the past set graph. In particular, the left Krieger cover graph can be obtained from the past set graph by restricting to those vertices that coincide with pasts of magic walks.

The past cover is non other than Krieger's past state chain [13]. When working in the world of $C^*$-algebras of sofic shifts, it is the past cover that will be of interest. However, we will also establish a relationship between the follower sets of words and our $C^*$-algebra; this is why both definitions have been given. Using follower sets and predecessor sets is more in the flavour of Fischer [10], while Krieger [13] used future and past sets. Although the two covers have a same subgraph, they are not quite the same, as the next example shows.
Example 1.7.2: This example shows that the past cover and the predecessor set cover are not the same. Suppose $X$ is the following sofic shift

```
1  o ------ o
  \\
2 \   \  \ \\
  o   \  o \\
```

Then $X^+$ consists of four points

\[ \{12131213\ldots, 21312131\ldots, 13121312\ldots, 31213121\ldots\}. \]

However, one can check directly that the predecessor set of the word '1' cannot be a past set for any of the points $x \in X^+$.

1.8. Follower and Predecessor sets of Labeled Graphs

When dealing with labeled graphs, one can define source and range maps. However, unlike the case for unlabeled graphs, the source and range maps will take values in the power set of $E^0$ (so they are set valued maps). We present the formal definition. To prevent confusion, we shall denoted the range and source maps on an unlabeled graph as $r_E$ and $s_E$ respectively.

Definition 1.8.1:

1. Let $\omega$ be a path on a labeled graph $E = (E^0, E^1, \Sigma, \pi)$ (so $\omega \in B(X)$ for the associated sofic shift space $X$). Define the range of $\omega$ as

\[ r(\omega) = \{v \in E^0 \mid \text{there is a path, } e \text{ on } (E^0, E^1) \text{ with } \pi(e) = \omega \text{ and } r_E(e) = v\}. \]

We say $\omega$ is a right synchronizing word for $G$ if $r(\omega)$ is a single vertex. If that vertex is $I$, we say $\omega$ focuses to $I$.

2. Notation as above. We define the source of $\omega$ as

\[ s(\omega) = \{v \in E^0 \mid \text{there is a path, } e \text{ on } (E^0, E^1) \text{ with } \pi(e) = \omega \text{ and } s_E(e) = v\}. \]
1.8. Follower and Predecessor sets of Labeled Graphs

We say \( \omega \) is a left synchronizing word for \( G \) if \( s(\omega) \) is a single vertex. If that vertex is \( J \), we say \( \omega \) radiates from \( J \).

The above definitions of \( r \) and \( s \) clearly coincide with the range and source maps when the labels on the graph are all unique. Note further that sources, sinks, and isolated vertices are defined similar to the non-labeled graphs and remark 1.4.3 can be modified appropriately to apply to labeled graphs.

Given a labeled graph \( E = (E^0, E^1, \Sigma, \pi) \), let \( X \) denote the sofic shift that is presented by \( E \); one defines the follower set of a vertex \( v \in E^0 \) as

\[
F_E(v) = \{ x \in X^+: v \in s(x) \}.
\]

Thus the follower set of a vertex is precisely the set of all walks that originate from that vertex. If the \( E \) is the follower set presentation of a sofic shift \( X \), then it is clear that the follower set of a vertex \( F_E(v) = F_X(\mu) \) for some word \( \mu \in B(X) \). One defines a predecessor set of a vertex similarly.

**Definition 1.8.2:** A labeled graph, \( (E, \pi) \) is said to be follower (predecessor) separated if \( v_1 \neq v_2 \in E^0 \), then \( F_E(v_1) \neq F_E(v_2) (P_E(v_1) \neq P_E(v_2)) \).

The importance of follower separation is the following theoretical description of the minimal right (left) resolving cover of a sofic shift \( X \).

**Theorem 1.8.3:** (see [16, Corollary 3.3.19]) Let \( X \) be an irreducible sofic shift. Then a right (left) resolving labeled graph \( (E, \pi) \) is the minimal right (left) resolving presentation if and only if \( E \) is irreducible and follower (predecessor) separated.

Thus, the right Krieger cover is follower separated. Furthermore, when \( F_X(\mu) \) is considered a vertex of the right Krieger cover, \( E \), we have that \( F_E(F_X(\mu)) = F_X(\mu) \). If one is given an arbitrary right (left) resolving labeled graph \( (E, \pi) \), one
Properties of Follower Sets

...can “merge” vertices to produce the minimal right (left) resolving graph. See [16, Lemma 3.3.8].

Remark 1.8.4: Because the right Krieger cover is follower separated, magic words in the right Krieger cover have a singleton range (in the left Krieger cover they have singleton source). Furthermore, follower (resp. predecessor) separation allows one to take a non-magic word and extend it on the right (resp. left) to a magic word. Thus, every non-magic word is a sub-word of a magic word.

1.9. Properties of Follower Sets

In this section we shall show some properties of follower sets which will be important for structure theorems later. First, we need a few definitions regarding graph presentations of shift spaces.

Remark 1.9.1: 1. Note that if the labeled graph \((E, \pi)\) is the right Krieger Cover for a sofic shift \(X\), then

\[ F_{X}(\nu) = \bigcup \{ F_{X}(\mu) \mid F_{X}(\mu) \in r(\nu) \}. \]

In particular, \(\mu \in B(X)\) is magic \(\iff\) \(\mu\) is a right synchronizing word (remark 1.8.4).

2. If the shift is an AFT of degree zero, then \(\omega\) is a right synchronizing word if and only if \(\omega\) is a left synchronizing word because \((E, \pi)\) is both right and left resolving.

We say a word \(\nu = \nu_{1} \ldots \nu_{n}, n \in \mathbb{N}\) is in \(B(F_{X}(\nu))\) if and only if \(F_{X}(\mu) \in s(\nu)\). Since the follower set presentation has no sources or sinks, any such word can be extended to a walk \(\nu x\) on the graph satisfying \(F_{X}(\mu) \in s(\nu x)\).

Lemma 1.9.2: Let \(X\) be an irreducible sofic shift and \(\mu \in B(X)\). If \(\mu\) is magic then \(B(F_{X}(\mu))\) contains magic words.
1.9. Properties of Follower Sets

Proof. Let $\mu$ be a magic word, then $\mu \in B(X)$, and thus must have a source on the follower set graph. Hence, $\mu \in F_X(\nu)$ for some magic word $\nu$. If $\nu \sim \mu$, we are done. If not, then by irreducibility there is a walk from $F_X(\mu)$ to $F_X(\nu)$ call it $\gamma$. Thus $F_X(\mu \cdot \gamma) = F_X(\nu)$. Hence $\mu \cdot \gamma \mu \in B(X) \Rightarrow \gamma \mu \in B(X)$, and $\gamma \mu \in B(F_X(\mu))$ is magic by remark 1.6.2.

Remark 1.9.3: Although the proof of above lemma requires an irreducible sofic shift, one can modify the proof to include the reducible sofics as follows. Every sofic shift can be broken down into irreducible components; so one can just look at each irreducible component of the sofic shift. If the shift is two-sided, each component will not have sources or sinks, so cases like figure 1.9.1 will not happen.

Proposition 1.9.4: Let $X$ be a sofic shift with $\mu_1, \cdots, \mu_m$ its distinct magic words. Then $X$ is an AFT of degree zero if and only if the intersection

$$B(F_X(\mu_i)) \cap B(F_X(\mu_j)), \ i \neq j$$

contains no magic words. Thus, there is no $x \in F_X(\mu_i) \cap F_X(\mu_j)$ with a magic word as a sub-word of $x$.

Proof. To prove the 'if' part suppose $\omega \in B(F_X(\mu_i)) \cap B(F_X(\mu_j)), \ i \neq j$ is a magic word. Then $\omega$ is right synchronizing, hence left synchronizing by remark 1.9.1.
1.9. Properties of Follower Sets

However, by assumption we must have \( \{F_X(\mu_i), F_X(\mu_j)\} \subseteq s(\omega) \). This contradicts left synchronizing.

To prove the 'only if' part, suppose \( X \) is not an AFT of degree zero. Then the Krieger Cover is not left resolving. Suppose this non left resolving occurs at vertex \( F_X(\mu_1) \). So there is an \( I \) in the symbol set with \( |s(I)| > 1, F_X(\mu_1) \in r(I) \). By lemma 1.9.2 there is a magic word \( \nu \in B(F_X(\mu_1)) \). Then \( I\nu \) is a magic word in \( X \) such that \( |s(I\nu)| \geq 2 \) in the right Krieger cover. Thus we have at least two magic words, say \( F_X(\mu_i), F_X(\mu_j) \), with \( I\nu \in B(F_X(\mu_i)) \cap B(F_X(\mu_j)) \). This proves the theorem. \( \square \)

**Corollary 1.9.5:** If \( X \) is an AFT of degree zero and \( X \) is also an SFT then \( B(F_X(\mu_i)) \cap B(F_X(\mu_j)) \) is finite for distinct magic words \( \mu_i, \mu_j \) (so \( F_X(\mu_i) \cap F_X(\mu_j) = \emptyset \)).

**Proof.** By proposition 1.9.4, the intersection of any two follower sets of magic words contains only non-magic words. Since for an SFT, every large enough word is magic, the intersection of two such sets can only be finite. \( \square \)

**Remark 1.9.6:** Note that AFT of degree zero is necessary for the proof of proposition 1.9.4. One can check the sofic shift shown in figure 1.5.2 has the magic word '21' \( \in B(F_X(12)) \cap B(F_X(01)) \).

We also have a lemma that will be important for our calculations later. The proof is a direct consequence of lemma 1.9.2 and proposition 1.9.4.

**Lemma 1.9.7:** If \( X \) is an AFT of degree zero then for distinct magic words \( \mu_i, \mu_j \), \( F_X(\mu_i) \not\subseteq F_X(\mu_j) \).

Before closing this section, we will prove the converse of corollary 1.9.5; this gives us an equivalent definition for an AFT of degree zero to be an SFT. To do so, we need one lemma.
Lemma 1.9.8: If $X$ is sofic and $\nu$ is non-magic then there is at least two distinct magic words $\mu_1, \mu_2$ with $\nu \in B(F_X(\mu_1)) \cap B(F_X(\mu_2))$.

Proof. If $\nu$ is non-magic then by remark 1.9.1
\[
F_X(\nu) = \bigcup_{i=1}^{n} \{F_X(\mu_i) \mid F_X(\mu_i) \in \tau(\nu)\}.
\]
As $\nu$ is non-magic, we must have $|\tau(\nu)| > 1$. If $|\tau(\nu)| = 1$, then there exists a magic word $\mu$ with $s(\nu) = F_X(\mu)$. As the follower set graph is right resolving, this is impossible. Thus, there exists distinct magic words, $\mu_1, \mu_2$, with $\{F_X(\mu_1), F_X(\mu_2)\} \subseteq \tau(\nu)$.

Thus $\nu \in B(F_X(\mu_1)) \cap B(F_X(\mu_2))$. \hfill \Box

Theorem 1.9.9: Let $X$ be a sofic shift. If $B(F_X(\mu_i)) \cap B(F_X(\mu_j))$ is finite for all distinct magic words $\mu_i, \mu_j$, then $X$ has finite type. If $X$ is an AFT of degree zero, then the converse also holds by corollary 1.9.5.

Proof. Suppose all the intersections are finite. By lemma 1.9.8 this means that there are $k < \infty$ many non-magic words, say $\nu_i$, $1 \leq i \leq k$. Let
\[
M = \sup_{1 \leq i \leq k} \{|\mu_i|\}
\]
Then any word of length greater than $M$ must be magic. This occurs if and only if $X$ has finite type (see [16]). \hfill \Box
CHAPTER 2

C*-algebras of a Shift Spaces

This chapter covers the constructions of the C*-algebras of K. Matsumoto [18]. Matsumoto's algebras are based on the realization of a C*-algebra of a shift of finite type (or Cuntz-Krieger algebra) as creation operators on a sub-Fock space. Using this notion, he generalizes such a construction to an arbitrary shift space. We will explore this construction in some detail, because it is essentially this algebra we wish to explore in earnest. The full details can be found in the papers of Matsumoto [18, 19, 20].

2.1. The Fock Space Construction for a Shift Space C*-algebra

We outline the construction of the C*-algebra of a shift. The reader is referred to [18] for the details. The K-theory is worked out in [20].

We assume $X$ is a shift space on a finite symbol set $\Sigma = \{1, \ldots, n\}$. We say $\mu = \mu_1\mu_2\cdots\mu_l$ with $\mu_i \in \Sigma$ is a word in $X$ if there is an $x \in X$ with $x_i = \mu_1, \ldots, x_{i+l-1} = \mu_l$. Denote by $|\mu|$ the number of symbols (length) in $\mu$. Let $B^l(X)$ denote the set of all words of length $l$, and $B(X) = \bigcup_{i=1}^\infty B^l(X)$. Let $e_0, e_1, \ldots, e_n$ be an orthonormal basis for a Hilbert space, $\mathcal{H}$. If $\mu = \mu_1\mu_2\cdots\mu_l \in B^l(X)$, let $e_\mu = e_{\mu_1} \otimes e_{\mu_2} \cdots \otimes e_{\mu_l} \in \bigotimes_{i=1}^l \mathcal{H}$ where $\mu_i \in \Sigma$. 
2.1. The Fock Space Construction for a Shift Space C*-algebra

Now let

\[ \mathcal{F}_0 = C_\infty e_0 \] (Vacuum Vector)

\[ \mathcal{F}_i = \text{Vector Space Spanned by vectors } e_\mu, \mu \in B^i(X) \]

\[ \mathcal{F} = \bigoplus_{i=0}^{\infty} \mathcal{F}_i \] (Hilbert space direct sum).

We define the (left) creation operator on \( \mathcal{F} \) for \( \mu \in B(X) \) as

\[ T_\mu e_0 = e_\mu \]

\[ T_\mu e_\nu = \begin{cases} e_\mu \otimes e_\nu & \text{if } \mu \nu \in B(X) \\ 0 & \text{otherwise} \end{cases} \]

The adjoint operator \( T_\mu^* \) can be thought of as the left annihilation operator

\[ T_\mu^* e_0 = 0 \]

\[ T_\mu^* e_\mu = e_0 \]

\[ T_\mu^* e_\nu = \begin{cases} e_\lambda & \text{if } \nu = \mu \lambda \in B(X) \\ 0 & \text{otherwise} \end{cases} \]

By letting \( P_0 \) be the rank one projection onto the vacuum vector \( e_0 \) we get that

\[ \sum_{i=1}^{n} T_i T_i^* + P_0 = 1_\mathcal{F}. \] Thus, the operator \( T_\mu P_0 T_\nu^* \) is the rank one partial isometry from the vector \( e_\nu \) to \( e_\mu \). This means that the C*-algebra generated by the elements of the form \( T_\mu P_0 T_\nu^* \) with \( \mu, \nu \in B(X) \) is isomorphic to the compact operators on \( \mathcal{F} \). The C*-algebra \( \mathcal{O}_X \) is defined to be the subalgebra of \( B(\mathcal{F}) \) generated by the operators \( T_\mu, \mu \in B(X) \) modulo the compact operators. We will denote by \( S_\mu \) the image of \( T_\mu \) in this quotient. One notes that \( S_i^* S_\mu S_\mu S_i = S_\mu^* S_\mu \) for \( i \in \Sigma \), and is non-zero if \( \mu \nu \in B(X) \). In fact \( S_\mu S_\nu = S_{\mu \nu} \) whenever \( \mu \nu \in B(X) \).
2.1. The Fock Space Construction for a Shift Space C*-algebra

Recall the definition of $B(F_X(\mu))$ given in chapter 1: We say that $\nu = \nu_1 \ldots \nu_n \in B(F_X(\mu))$ if and only if there exists an $(x_i)_{i=1}^\infty \in F_X(\mu)$ with $x_1 = \nu_1, \ldots, x_n = \nu_n$. When $F_X(\mu)$ is viewed as a vertex in the follower set graph of $X$, we see that $\nu \in B(F_X(\mu))$ if and only if $F_X(\mu) \in s(\nu)$. Observe the following:

**Lemma 2.1.1:** Let $X$ be a sofic shift, $\mathcal{F}_X$ the Fock space constructed in this section, and $T_\mu, \mu \in B(X)$ the left creation operators. Then

1. For each $\mu \in B(X)$

$$T_\mu^*T_\mu \mathcal{F}_X = \text{span}\{e_\nu : \mu \nu \in B(X)\}$$

$$= \text{span}\{e_\nu : \nu \in B(F_X(\mu))\}$$

and

$$(1 - T_\mu^*T_\mu) \mathcal{F}_X = \text{span}\{e_\nu : \nu \not\in B(F_X(\mu))\}$$

2. $F_X(\mu) = F_X(\nu)$ if and only if $S_\mu^* S_\mu = S_\nu^* S_\nu$.

**Proof.** (1) follows directly from the construction of the operators $T_\mu$. To show (2), if $F_X(\mu) = F_X(\nu)$ then certainly $B(F_X(\mu)) = B(F_X(\nu))$ thus $T_\mu^* T_\mu = T_\nu^* T_\nu$ by (1). Conversely, if $S_\mu^* S_\mu = S_\nu^* S_\nu$ then $T^*_\mu T_\mu - T^*_\nu T_\nu \in \mathcal{K}$. Therefore, $B(F_X(\mu)) \cap B(F_X(\nu))$ must be an infinite set. Thus $F_X(\mu) \cap F_X(\nu)$ is non-empty. Equality follows from the fact that if $(x_i)_{i=1}^\infty \in F_X(\mu)$ but not in $F_X(\nu)$, then any word of the form $x_1 \ldots x_n$ will be in $B(F_X(\mu))$ but there will be infinitely many $n$ for which $x_1 \ldots x_n$ is not in $B(F_X(\nu))$. Using (1), this would mean that $T_\mu^* T_\mu - T_\nu^* T_\nu$ will not be compact, a contradiction. \qed
2.2. Summary of the Structure of $\mathcal{O}_X$

We summarize the results from [18, 20]. We let $k, l, n \in \mathbb{N}$, $k \leq l$.

\[ A_n = \text{The C*-subalgebra of } \mathcal{O}_X \text{ generated by } S_* S_{\mu}, \mu \in B_n(X) \]

\[ A_X = \text{The C*-subalgebra of } \mathcal{O}_X \text{ generated by } S_* S_{\mu}, \mu \in B(X) \]

\[ \mathcal{F}_k^l = \text{The C*-subalgebra of } \mathcal{O}_X \text{ generated by } S_{\mu} a S_{\nu}^* \]

\[ \mu, \nu \in B^k(X), a \in A_l \]

\[ \mathcal{F}_k^\infty = \text{The C*-subalgebra of } \mathcal{O}_X \text{ generated by } S_{\mu} a S_{\nu}^* \]

\[ \mu, \nu \in B^k(X), a \in A_X \]

\[ \mathcal{F}_X^\infty = \text{The C*-subalgebra of } \mathcal{O}_X \text{ generated by } S_{\mu} a S_{\nu}^* \]

\[ \mu, \nu \in B(X), |\mu| = |\nu|, a \in A_X \]

We have the following results from [18, Section 3].

**Lemma 2.2.1:**

1. $A_l$ is finite dimensional and commutative.

2. $A_l$ is contained in $A_{l+1}$ so that $A_X = \bigcup A_l$ is a commutative AF-algebra.

3. Each element of $\mathcal{F}_k^l$ is a finite linear combination of elements of the form $S_{\mu} a S_{\nu}^*, \mu, \nu \in B^k(X), a \in A_l$. So $\mathcal{F}_k^l$ is finite dimensional.

4. There are two embeddings in $\{\mathcal{F}_k^l\}_{k \leq l}$:
   (a) $\mathcal{F}_k^l \subset \mathcal{F}_k^{l+1}$ since $A_l \subset A_{l+1}$.
   (b) $\mathcal{F}_k^l \subset \mathcal{F}_{k+1}^{l+1}$ through the identity:

   \[ S_{\mu} a S_{\nu}^* = \sum_{j=1}^n S_{\mu_j} S_{\nu_j}^* a S_{\nu_j}, \mu, \nu \in B_k(X), a \in A_l \]

5. Both $\mathcal{F}_k^\infty = \lim \mathcal{F}_k^l$ and $\mathcal{F}_X^\infty = \lim \mathcal{F}_k^\infty$ are AF algebras.
2.2. Summary of the Structure of $\mathcal{O}_X$

With these at our disposal, one can calculate the K-theory of the C*-algebra $\mathcal{O}_X$. The calculation is similar to the Cuntz-Krieger algebra case [8]. Define $\lambda_X : A_X \to A_X$ by

\[ \lambda_X(a) = \sum_{i=1}^{n} S_i^* a S_i, \quad a \in A_X. \]

(2.1)

As in [18, 20], we refer to $\lambda_X$ as the Perron-Frobenius operator on $A_X$. It is a *-homomorphism on $A_X$. From [20] we have the following about the K-theory.

**Proposition 2.2.2:**

1. [20, Proposition 3.5] $K_0(A_X) \cong \lim\downarrow (A_i, i_*)$ where $i$ is the natural inclusion $A_i \to A_{i+1}$.

2. [20, Proposition 3.11] $K_0(F_X^\infty) \cong \lim\downarrow (K_0(A_X), \lambda_{X*})$ where $\lambda_X$ is the Perron-Frobenius operator (2.1)

Like Cuntz-Krieger algebras, $F_X^\infty$ can be realized as stably isomorphic to a crossed product of a $\mathbb{T}$-action on $\mathcal{O}_X$ [20, Corollary 4.2]. Thus, one can employ the Pimsner-Voiculescu exact sequence to get the K-theory of $\mathcal{O}_X$. Moreover, by [18, Proposition 8.2], the algebra $A_X$ is finite dimensional if and only if the shift $X$ is sofic. In this case $A_X \cong \mathbb{C}^n$ thus $K_0(A_X) \cong \mathbb{Z}^n$. Hence, the Perron-Frobenius operator can be viewed as a map on K-theory is an $n \times n$ matrix with entries in $\mathbb{Z}$; the K-theory of $\mathcal{O}_X$ can thus be described as

**Theorem 2.2.3:** (see [20, Theorem 4.9]) Let $X$ be a sofic shift and $A$ the $n \times n$ matrix representing the Perron-Frobenius operator $\lambda_X : K_*(A_X) \to K_*(A_X)$. Then

\[ K_0(\mathcal{O}_X) \cong \mathbb{Z}^n / (1 - A)\mathbb{Z}^n \]

\[ K_1(\mathcal{O}_X) \cong \ker(1 - A)\mathbb{Z}^n. \]

We remark that the matrix representation for the Perron-Frobenius operator we will use in later sections will actually be the transpose of $A$ in theorem 2.2.3. This is because we will be working with graphs, and our definition of $A$ will be easier to work with in this context.
2.3. Exploring the AF-Core

From the last section, we know that $A_X = \overline{\bigcup_i A_i}$, with each $A_i$ a finite dimensional, commutative algebra. Because $A_X$ is commutative, it is isomorphic to the continuous functions on a compact space. We shall describe this space as done in [19, Section 2].

For the one-sided subshift $X^+$ put

$$P_l(x) = \{ \mu \in B_l(X) : \mu x \in X^+ \},$$

for $x \in X^+, l \in \mathbb{N}$, and define an equivalence relation on $X^+$ as follows $x \sim_l y$ if $P_l(x) = P_l(y)$. We say that $x, y \in X^+$ are $l$-past equivalent if $x \sim_l y$. Denote by $\Omega_l = X^+ / \sim_l$, the set of $l$-past equivalences on $X^+$.

It is straightforward to check [19, Lemma 2.1], that if $x \sim_l y$ then $x \sim_m y$ for every $m \leq l$. Furthermore if $\mu \in B_k(X)$, and $x \sim_l y$ with $\mu x \in X^+$, then $\mu y \in X^+$ and $\mu x \sim_{l-k} \mu y$ for $l > k$, and for any shift space $X$, the number of $l$-past equivalence classes is finite.

Because of this, we get an inverse sequence of surjections

$$\Omega_1 \hookrightarrow \Omega_2 \hookrightarrow \cdots \hookrightarrow \Omega_l \hookrightarrow \cdots .$$

Let

$$\Omega_X = \lim \Omega_l$$

be the projective limit as a topological space. As each $\Omega_l$ is finite, we put the discrete topology on $\Omega_l$, and the inverse limit topology on $\Omega_X$.

For $x, y \in X^+$, we say that $x$ is past equivalent to $y$ (denoted $x \sim_\infty y$) if $P_\infty(x) = P_\infty(y)$ where

$$P_\infty(x) = \{(\ldots x_{-2}x_{-1}x_0) \in X^- : (\ldots x_{-2}x_{-1}x_0)x \in X\}.$$
As mentioned in [19, Section 2], \( \Omega_X \) is nothing but the quotient \( X^+ / \sim_{\infty} \).

We have the following:

**Proposition 2.3.1:** [19, Lemma 4.6, Corollary 4.7] Let \( X \) be a shift space.

1. For each \( l \in \mathbb{N} \), the quotient space \( X^+ / \sim_l \), endowed with the discrete topology, is compact and Hausdorff. Moreover the maps sending \( S^*_\mu S_\mu, \mu \in B_l(X) \) to the characteristic function of
   \[
   \{ [x]_l : x \in X^+, \mu x \in X^+ \}
   \]
   extends to an isomorphism between \( A_l \) and \( C(X^+ / \sim_l) \).

2. The map sending \( S^*_\mu S_\mu, \mu \in B(X) \), to the characteristic function of
   \[
   \{ [x]_\infty : x \in X^+, \mu x \in X^+ \}
   \]
   extends to an isomorphism between \( A_X \) and \( C(X^+ / \sim_\infty) \); the topology on \( X^+ / \sim_\infty \) is the inverse limit topology.

Proposition 2.3.1 has some important implications for sofic shifts. First, recall the definition of a past set of an \( x \in X^+ \) from section 1.7. We see that \( P_\infty(x) \) defined in (2.2) is equal to the past set \( P_X(x) \). So \( x \sim_\infty y \) if and only if \( P_X(x) = P_X(y) \). Thus, as the number of past sets if finite if and only if \( X \) is a sofic shift we have.

**Corollary 2.3.2:** [18, Proposition 8.2] The algebra \( A_X \) is finite dimensional if and only if \( X \) is a sofic shift.

In view of proposition 2.3.1 for any shift \( X \), we can regard any element of \( A_X \) as a continuous function on \( X^+ \) which is constant on a past equivalence class. In particular, elements of \( A_l \) will be associated to functions constant on an \( l \)-past equivalence class. Henceforth, we suppress this in our notation. For \( \mu \) in \( B(X) \), we
regard $S_\mu^*S_\mu$ as the characteristic function of
\[ \{ x : x, \mu x \in X^+ \}. \]

When $X$ is a sofic shift, $X^+/\sim_\infty$ is finite; if we choose a complete set of representatives for $X^+/\sim_\infty$, say $x_1, \ldots, x_n \in X^+$, then for each $x_i$ we have a minimal projection $P_i$ in $A_X$,
\[ P_i(y) = \begin{cases} 1 & \text{if } y \sim_\infty x_i \\ 0 & \text{otherwise.} \end{cases} \]

As each minimal projection can be regarded as a characteristic function on a past equivalence class, define:
\begin{equation}
\chi(P_i) = \{ x \in X^+ : x \sim_\infty x_i \}
\end{equation}
\[ = \{ x \in X^+ : P_X(x) = P_X(x_i) \}. \]

Note the above equation will be independent of the choice of equivalence class representatives $x_i$. The correspondence above tells us that $x \in \chi(P_i)$ if and only if $P_i(x) = 1$ (when viewed as a characteristic function).

**Remark 2.3.3:** As a final remark, we mention that the algebra $A_X$ is unital. This can be seen because
\[ \sum_{I \in \Sigma} T_I^*T_I \]
is a positive, invertible operator on the Fock space. So the identity operator is in the algebra generated by $\{ T_I^*T_I : I \in \Sigma \}$.

### 2.4. The Universal Property of $\mathcal{O}_X$

We state here the universal property of the $C^*$-algebra $\mathcal{O}_X$. 
2.4. The Universal Property of $\mathcal{O}_X$

**Theorem 2.4.1**: [18, Theorem 4.9] Let $\mathcal{A}$ be a unital $C^*$-algebra. Suppose that there is a unital $^*$-homomorphism $\pi$ from $A_X$ to $\mathcal{A}$, and there are $n$ partial isometries $s_i \in \mathcal{A}$, $1 \leq i \leq n$ satisfying the following relations:

1. $\sum_{j=1}^{n} s_j s_j^* = 1$, $s_{\mu}^* s_{\nu} s_{\nu}^* s_{\mu}^* = s_{\nu}^* s_{\mu}^* s_{\mu} s_{\mu}, \mu, \nu, \mu^* \in B(X)$,
2. $s_{\mu}^* s_{\mu} = \pi(S_{\mu} S_{\mu}), \mu \in B(X)$,

where $s_{\mu} = s_{\mu_k} \cdots s_{\mu_1}, \mu = (\mu_k \cdots \mu_1) \in B(X)$. Then there exists a homomorphism $\tilde{\pi}$ from $\mathcal{O}_X$ to $\mathcal{A}$ such that $\tilde{\pi}(S_i) = s_i$ for $1 \leq i \leq n$, and its restriction to $A_X$ coincides with $\pi$.

Since our $\mathcal{O}_X$ was constructed from concrete Hilbert space operators, one can ask if a different set of partial isometries satisfying (1) and (2) of theorem 2.4.1 give you an isomorphism between $\mathcal{O}_X$ and $\mathcal{A}$. The theorem does not guarantee that the above homomorphism is injective. Injectivity can be obtained two ways. The first way is based on the structure of $\mathcal{F}_{X}^\infty$ and is described in detail in [18]. We sketch the concepts here.

Let $(X^+, \sigma)$ be the one-sided sofic shift. Denote by $\mathcal{D}_X$ the $C^*$-algebra generated by projections $D_{\mu} = S_{\mu} S_{\mu}^*$. It is an abelian $C^*$-algebra that commutes with $A_X$. Define

$$\phi(D) = \sum_{i=1}^{n} S_i D S_i^*, D \in \mathcal{D}_X.$$ 

We have the following from [18].

**Proposition 2.4.2**: There exists an isomorphism $\omega : \mathcal{D}_X \to C(X^+)$, the continuous functions on $X^+$ such that $\omega \phi = \sigma^* \omega$, and $\omega(D_{\mu}) = \chi_{\mu}$ where $\chi_{\mu}$ is the characteristic function of the cylinder set of $\mu$, and $\sigma^* : C(X^+) \to C(X^+) : f \mapsto f \circ \sigma$.

**Definition 2.4.3**: We say a shift $X$ satisfies condition $(I_X)$ if for every $l, k \in \mathbb{N}$ with $l \geq k$ there exists a projection $q_k^l$ in $\mathcal{D}_X$ such that:
2.4. The Universal Property of $\mathcal{O}_X$

1. $q_k a \neq 0$ for any nonzero $a \in A_t$,
2. $q_k \phi^m(q_k^l) = 0$, $1 \leq m \leq k$.

**Remark 2.4.4:** Since $\omega(S_\mu S^*_\mu)$ is the characteristic function on $U_\mu$, the cylinder set of $\mu$, one gets from proposition 2.4.2 and by induction on $n$ that

\begin{equation}
(2.4) \quad \omega \circ \phi^n(S_\mu S^* \mu) = 1_{\sigma^{-n}(U_\mu)}.
\end{equation}

Here $1_{\sigma^{-n}(U_\mu)}$ is the characteristic function on the set $\sigma^{-n}(U_\mu)$. It is straightforward to show that the function $1_{\sigma^{-n}(U_\mu)}$ is a finite sum of characteristic functions on cylinder sets.

A matrix $A$ satisfies condition (I) of [8] if and only if the edge shift, $X$, obtained from the matrix $A$ satisfies condition (I$X$) (see [18]). Although condition (I$X$) does not just involve the subalgebra $A_X$, we shall see later that for sofic shifts, (I$X$) is ultimately determined by the algebra $A_X$ and the Perron-Frobenius operator $A \ (c.f. \ theorem \ 3.6.1)$.

**Theorem 2.4.5:** [18, Theorem 5.2] *Assumptions as in Theorem 2.4.1. If in addition $X$ satisfies condition (I$X$) of definition 2.4.3 then the extension $\tilde{\pi}$ is injective.*

Based on the construction of the Fock Space, the transformation $e_\mu \mapsto z^k e_\mu$, where $\mu \in B^k(X)$, $z \in \mathbb{T}$ yields a unitary representation $U_z$ of $z \in \mathbb{T}$ on $\mathfrak{F}$. The unitaries satisfy $U_z T_\mu U_z^* = z^k T_\mu$ and leave the compact operators invariant. Thus, there is a gauge action $\alpha_z$ on $\mathcal{O}_X$ satisfying $\alpha_z(S_\mu) = z^k S_\mu$ whenever $\mu \in B^k(X)$. This yields a norm one projection $E$ from $\mathcal{O}_X$ to its fixed point algebra (under $\alpha$) $\mathcal{O}_X^\alpha$ defined by:

$$E(x) = \int_{z \in \mathbb{T}} \alpha_z(x) dz$$

for $x \in \mathcal{O}_X$. 
This fixed point algebra $\mathcal{O}_X^\infty$ is precisely $\mathcal{F}_X^\infty$ [18, Proposition 3.11]. The expectation $E$ is faithful on the positive elements. With this gauge action, we can show uniqueness of $\mathcal{O}_X$ similar to uniqueness of $\mathcal{A}\mathcal{O}_A$ defined in [2] for Cuntz-Krieger algebras.

**Theorem 2.4.6:** Let $\mathcal{A}$ be a unital $C^*$-algebra. Suppose that there is a unital *-homomorphism $\pi$ from $A_X$ to $\mathcal{A}$, and there are $n$ partial isometries $s_i \in \mathcal{A}$, $1 \leq i \leq n$ that generate $\mathcal{A}$ and satisfy the following relations:

1. $\sum_{j=1}^{n} s_j s_j^* = 1$, $s_\mu^* s_\mu s_\nu = s_\nu s_\mu^* s_\mu$, $\mu, \nu \in B(X),$
2. $s_\mu^* s_\mu = \pi(S_\mu^* S_\mu)$, $\mu \in B(X),$

where $s_\mu = s_{\mu_k} \cdots s_{\mu_1}$, $\mu = (\mu_k \cdots \mu_1) \in B(X)$. Suppose further there exists a gauge action $\beta_z : T \to \text{Aut}(\mathcal{A})$ satisfying $\beta_z(s_i) = z s_i$ for all $z \in T$, and $\beta_z(s_\mu^* s_\mu) = s_\mu^* s_\mu$.

Then there exists an isomorphism $\tilde{\pi}$ from $\mathcal{O}_X$ to $\mathcal{A}$ such that $\tilde{\pi}(S_i) = s_i$ for $1 \leq i \leq n$, and its restriction to $A_X$ coincides with $\pi$.

**Proof.** Theorem 2.4.1 certainly shows us that $\tilde{\pi}$ exists and is surjective. Let $\rho : \mathcal{A} \to B(\mathcal{H})$ be a faithful representation of $\mathcal{A}$ on a separable, infinite dimensional Hilbert space. Denote by $T_i$ the partial isometry $\rho(s_i)$. Then $\bar{\rho} = \rho \circ \tilde{\pi}$ is a representation of $\mathcal{O}_X$ on $B(\mathcal{H})$ satisfying $\bar{\rho}(S_i) = T_i$.

It suffices to show that $\bar{\rho}$ is injective, hence $\tilde{\pi}$ must also be injective as $\rho$ is. We can do this by showing $\bar{\rho}$ is faithful on

$$\mathcal{O}_X^\infty = \mathcal{F}_X^\infty = \bigcup_{l \geq k} \mathcal{F}_l^i.$$ 

Using [1, Lemma 1.3] we have

$$\ker(\bar{\rho}|_{\mathcal{F}_k^l}) = \bigcup_{l \geq k} \mathcal{F}_l^i \cap \ker(\bar{\rho}|_{\mathcal{F}_k^l}).$$
2.4. The Universal Property of $\mathcal{O}_X$

So it suffices to show that $\tilde{\rho}$ is faithful on each $\mathcal{F}_k^l$ for $l \geq k$. We know from [18] that $\mathcal{F}_k^l$ is generated by the elements $S_{\mu}P_iS_{\nu}$ with $|\nu| = |\mu| = k$ and $P_i \in A_i$ is a minimal projection. Suppose that $\tilde{\rho}(S_{\mu}P_iS_{\nu}^*) = 0$, then certainly

\[ (2.5) \quad \tilde{\rho}(S_{\mu}^*[S_{\mu}P_iS_{\nu}^*]S_{\nu}) = 0. \]

But as $S_{\mu}^*[S_{\mu}P_iS_{\nu}^*]S_{\nu} \in A_X$, and $\tilde{\rho}$ is faithful on $A_X$ (because $\tilde{\pi}$ is faithful on $A_X$ and $\rho$ is faithful), we must have $\tilde{\rho}(S_{\mu}P_iS_{\nu}^*) \neq 0$. Thus equation (2.5) is a contradiction. Thus $\tilde{\rho}$ is faithful on each $\mathcal{F}_k^l$, hence on $\mathcal{F}_k^\infty$.

Furthermore, $\rho \circ \beta_z \circ \rho^{-1} \circ \tilde{\rho}(S_I) = zT_I$ for every $I$ in the symbol set $\Sigma$. We also must have $\rho \circ \beta_z \circ \rho^{-1} \circ \tilde{\rho}(S_{\mu}^*S_{\mu}) = T_{\mu}^*T_{\mu}$ for every $\mu \in B(X)$. This means that $\rho \circ \beta_z \circ \rho^{-1} \circ \tilde{\rho} = \pi \circ \alpha_z$ on $\mathcal{O}_X$. For any non-zero $x \in \mathcal{O}_X$ we get

\[
0 \neq \| \pi(\int_T \alpha_z(x)dt) \| = \| \int_T \pi \circ \alpha_z(x)dt \| \\
\leq \int_T \| \pi \circ \alpha_z(x) \| dt \\
= \int_T \| \rho \circ \beta_z \circ \rho^{-1} \circ \tilde{\rho}(x) \| dt \\
= \int_T \| \tilde{\rho}(x) \| dt = \| \tilde{\rho}(x) \| .
\]

So by using, for example [5, Lemma 2.2], we get that $\tilde{\rho}$ is faithful on $\mathcal{O}_X$. Hence $\tilde{\pi}$ must also be faithful, hence $\tilde{\pi}$ is an isomorphism. \qed

The above proof is an adaptation of the universal algebra $\mathcal{A}\mathcal{O}_X$ shown in [2]. Uniqueness of generators due to condition $(I_X)$ is, in many cases, too strong a requirement; many of the sofic shifts will not have this uniqueness property (c.f. sections 7.1, 7.2). However, because of the natural gauge action on $\mathcal{O}_X$, we can still obtain uniqueness of the generators of $\mathcal{O}_X$. 
Remark 2.4.7: When we speak of $\mathcal{O}_X$ being universal, we mean in the sense of theorem 2.4.6. However, if $X$ satisfies condition $(I_X)$, theorem 2.4.6 degenerates to theorem 2.4.5, which is a stronger uniqueness theorem.

2.5. The Failure of the Groupoid Constructions

Before we continue with the structure of $\mathcal{O}_X$, we will mention why the groupoid construction done in [14] does not work for sofic $X$, and thus cannot work for labeled graphs. There are many ways of stating this, mainly because there are many equivalent ways of expressing the same equivalence relation. We shall follow [3, 23] (see also [14, 22] for other views).

In order for the groupoid model to work, the one-sided shift map $\sigma : X^+ \to X^+$ must be a local homeomorphism; we shall show this is equivalent to saying that $X^+$ is a shift of finite type. For notational convenience, if $\pi : X \to Y$ is a finite to one map on shift spaces $X, Y$, we denote by $\#\pi^{-1}(y), y \in Y$, the number of elements in $\pi^{-1}(y)$. If $y = \mu \mu \mu \ldots$ is a periodic point in $Y$, then we denote by $\mu^n, n \in \mathbb{N}$ the word in $Y$ obtained by repeating $\mu$ $n$-times.

We need two technical lemmas; the first of which will also be important later.

Lemma 2.5.1: [13, Proposition 4.3] If $X$ is a two-sided purely sofic shift with Krieger cover $\pi : \Sigma_R \to X$, then there exists a periodic point $x \in X$ with $\#\pi^{-1}(x) > 1$.

Remark 2.5.2: If the periodic point $x \in X$ obtained in lemma 2.5.1 is of the form $x = \ldots \mu \mu \mu \ldots$, then it is necessary that any word in the obtained by repeating $\mu$ any number of times must be non-magic. Thus, the pre-image of any such word will have cardinality larger than 1. Furthermore, if $y = \mu \mu \ldots \in X^+$ then certainly $y$ has more than one preimage in $\Sigma_R^+$. 
2.5. The Failure of the Groupoid Constructions

Lemma 2.5.3: Let $X$ be an irreducible purely sofic shift with right Krieger cover $\pi : \Sigma_R \to X$. Suppose that $x = \mu \mu \ldots \in X$ with $\mu$ non-periodic, $\# \pi^{-1}(x) > 1$, and $\mu^k$ a non-magic word (remark 2.5.2) for every $k \in \mathbb{N}$. Then there exists magic words $\nu, \omega \in B(X)$ and $N_0 \in \mathbb{N}$ with $\nu \mu^n \in B(X)$ and $\mu^n \omega \in B(X)$, but $\nu \mu^n \omega \notin B(X)$ for every $n > N_0$.

Proof. Let $r(\mu)$ be the range of $\mu$ in the right Krieger cover graph from section 1.6 note that

$$r(\mu) \supseteq r(\mu \mu) \supseteq r(\mu \mu \mu) \supseteq \ldots.$$  

As $\pi$ is finite to one, there must exist an $N_0 \in \mathbb{N}$ with $r(\mu^n) = r(\mu^{n+1})$ for $n \geq N_0$. Suppose $r(\mu^n) = \{ F_X(\mu_i) \}_{i=1}^k$ for some finite collection $k > 1$ of follower sets of magic words $\mu_i$. As the right Krieger cover is follower separated we will assume without loss of generality that there exists a magic word $\omega \in B(F_X(\mu_1)), \omega \notin B(F_X(\mu_2))$.

By irreducibility, there must be a magic word $\nu$ with $F_X(\nu \mu^n) = F_X(\mu_2)$ (we can obtain such $\nu$ by "backtracking" on the Krieger cover graph of $X$ from $F_X(\mu_2)$). The right resolving property ensures $F_X(\nu \mu^n) = F_X(\mu_2)$. Then both $\mu^n \omega$ and $\nu \mu^n \in B(X)$ by construction. However $\nu \mu^n \omega \notin B(X)$ because $\omega \notin B(F_X(\mu_2))$. $\square$

Theorem 2.5.4: A one sided sofic shift, $X$, is a SFT if and only if the shift map $\sigma : X \to X$ is a local homeomorphism.

The proof of Theorem 2.5.4. The "if" will be proven by contrapositive. Suppose $X$ is a purely sofic shift and $\pi : \Sigma_R \to X$ be the right Krieger cover. We choose a periodic point $x = \mu \mu \ldots \in X$, $N_0 \in \mathbb{N}$, $\nu, \omega \in B(X)$ as in lemma 2.5.3. Let $z = \nu \mu \mu \ldots \in X$.

If $\sigma$ is a local homeomorphism, then so is $\sigma^{\nu}$ where $|\nu|$ denotes the length of $\nu$. Suppose there exist open neighbourhoods $U, V$ of $z$ and $\sigma^{\nu}(z)$ respectively with
2.5. The Failure of the Groupoid Constructions

\( \sigma^{|\nu|} : U \to V \) a homeomorphism. There must exist a cylinder set of \( z \) based at \( z_1 \), such that \( U^1_z \subset U \) and \( \sigma(U^1_z) \subset V \).

By choosing a small enough cylinder set, we can assume \( U^1_z \) is a cylinder set of the form \( \nu \mu^n \) for \( n > N_0 \). Thus, \( W = \sigma^{|\nu|}(U^1_z) \) must be a cylinder set beginning with \( \mu^n \). Note that any \( y \in X \) beginning with \( \mu^n \omega \) will be in \( W \), but \( y \) will have no preimage in \( U_z \) by lemma 2.5.3. This is a contradiction, so \( \sigma \) is not a local homeomorphism.

To show the “only if” part, recall that if \( X \) is a SFT, there exists a finite collection of forbidden words for \( X \). Suppose the largest such word has length \( N_0 \in \mathbb{N} \). Let \( x \in X \) and \( U_x \) be a cylinder set of \( X \) specifying at least \( N_0 + 2 \) symbols; then \( \sigma(U_x) = W_y \) where \( W_y \) is the cylinder set obtained from \( U_x \) by deleting the first symbol. Equality comes from the fact that both cylinder sets dictate at least \( N_0 \) symbols. One can then check \( \sigma \) is a homeomorphism on these neighbourhoods. This completes the proof. \( \square \)

Example 2.5.5: To illustrate theorem 2.5.4, let \( X \) be the one-sided even shift on the symbols \( \{1, 2\} \). Thus between any two \( 1 \)'s is an even number of \( 2 \)'s (or zero \( 2 \)'s). One can check directly that \( x = 122222... \in X \), yet \( \sigma \) cannot be a local homeomorphism near \( x \). This is because any cylinder set of \( x \) is of the form \( 12^n \) for some \( n \in \mathbb{N} \); any \( y \in X \) can be concatenated to \( 2^n \) (forming \( 2^n y \)). However, depending on whether \( n \) is even or odd, \( y \)'s beginning with an even or an odd number of \( 2 \)'s respectively can be concatenated on \( 12^n \). So no cylinder set of \( x \) maps onto a cylinder set of \( \sigma(x) \). It is this technique that is generalized to prove lemma 2.5.3

Remark 2.5.6: For reducible sofics, theorem 2.5.4 can be used by breaking the sofic shift into its irreducible components and applying theorem 2.5.4 to each of
2.5. The Failure of the Groupoid Constructions

these components. For a reducible sofic shift, the restriction of $\sigma$ to at least one of these components will not be a local homeomorphism.
CHAPTER 3

$\mathcal{O}_X$ and Graph $C^*$-algebras

In this chapter, we introduce the notion of a $C^*$-algebra of a graph constructed mainly by A. Kumjian, D. Pask, I. Raeburn, and J. Renault [14, 15]. Based on the fact the shifts of finite type are intimately related to finite directed graphs, they exploited this relationship to define a $C^*$-algebra of a (possibly infinite) graph. Rather than using the Fock space view of the Cuntz-Krieger algebra, they used a groupoid view; managing to show that the groupoid was built from the space of all right infinite paths on the graph (see [3] for related work). We will not look at the details of this construction, but instead will state the main theorems needed for our purposes.

We already know how sofic shifts relate to directed graphs from chapter 1. This chapter's aim is to prove that every $\mathcal{O}_X$ is equal to $C^*(E_A)$, where $E_A$ is the graph obtained from Perron-Frobenius operator $A$. This allows us to exploit the latest structure theorems for $C^*(E_A)$ and apply them to $\mathcal{O}_X$.

We will begin this chapter by looking at the construction of a $C^*$-algebra of a directed graph.

3.1. The Universal $C^*$-algebra of a Graph

We quickly outline the main theorems we need for the construction of the $C^*$-algebra of a directed graph. Most of this work can be found in [4, 14, 15].

For a directed graph $E = (E^0, E^1)$, one defines the $C^*$-algebra of the graph by defining some generating partial isometries on $B(H)$ ($H$ a Hilbert space) that
satisfy certain relations based on the structure of the graph. The power in the work of [14, 15], was that they could define such C*-algebras for infinite graphs, and/or graphs with sinks, thus extending the definition of a Cuntz-Krieger algebra. The only condition needed on $E$ is that $E$ is row finite, that is, every vertex only emits a finite number of edges; work for non row finite graphs can be found in [9].

**Definition 3.1.1:** (see [15]) Let $E = (E^0, E^1)$ be a row finite directed graph, then a Cuntz-Krieger $E$-family consists of a set $\{P_v : v \in E^0\}$ of mutually orthogonal projections, and a set $\{S_e : e \in E^1\}$ of partial isometries satisfying

$$S_e^* S_e = P_{r(e)} \text{ for } e \in E^1$$

(3.1)

$$P_v = \sum_{\{e:s(e)=v\}} S_e S_e^* \text{ for each } v \in s(E^1).$$

A similar definition is given for the matrices [14] (either the vertex or edge matrix) of the graph.

**Definition 3.1.2:** (see [2, 8, 14, 15]) If $A$ is an $n \times n$ matrix with entries in $\{0, 1\}$, and $Q_i$ a collection of $n$ partial isometries acting on a Hilbert Space $\mathcal{H}$ satisfying

$$Q_i^* Q_i = \sum_{j=1}^{n} A(i,j) Q_j Q_j^* \quad \sum_{i=1}^{n} Q_j Q_j^* = 1,$$

(3.2)

and $Q_i^* Q_j = 0$ for $i \neq j$, then the collection $Q_i$ is called a Cuntz-Krieger $A$-family.

In [2], the C*-algebra $\mathcal{A}O_A$ is defined to be the universal C*-algebra generated by a Cuntz-Krieger $A$-family. The universal property of $\mathcal{A}O_A$ [2, Theorem 2.3] is similar to the universal property of $\mathcal{O}_X$ defined in theorem 2.4.6. This algebra was essentially a generalization of the universal algebra of a Cuntz-Krieger $A$-family, $\mathcal{O}_A$, defined in [8]. However, Cuntz and Krieger required a stronger condition on the matrix $A$ in order to get their universal property: The condition on $A$ is referred to as condition (J) (see [8]). We will study this further later.
3.1. The Universal $C^*$-algebra of a Graph

Remark 3.1.3: If $X$ and $Y$ are SFT's, it should be noted there are always matrices associated with $X$ and $Y$ (see theorem 1.3.1, example 1.2.1). Denote these matrices as $A$ and $B$ respectively (see the proof of [8, Proposition 2.17]). Moreover, if the one-sided subshifts $X^+$ and $Y^+$ are topologically conjugate, then $\mathcal{AO}_A$ is isomorphic to $\mathcal{AO}_B$. This proof is the same as the proof of [8, Proposition 2.17], except instead of invoking [8, Theorem 2.13], use [2, Theorem 2.3] (or theorem 2.4.6).

Remark 3.1.4: If $A$ has non-negative integer entries, then one defines $\mathcal{O}_A$ to be the $C^*$-algebra generated by the Cuntz-Krieger $A_E$ family, where $A_E$ is the corresponding edge matrix of the graph of $A$ (see chapter 1 or [8, Remark 2.16]). If $A$ was initially a 0-1 matrix, and one forms $A_E$, then $A_E$ may not equal $A$. However, because $A$ was initially a 0-1 matrix, the one-sided shift spaces obtained from $A$ and $E_A$ (example 1.2.1) will be conjugate [16, Section 2.3]. In this case, remark 3.1.3 tells us $\mathcal{AO}_A \cong \mathcal{AO}_{A_E}$.

Theorem 3.1.5: (see [15, Theorem 1.2]) Let $E$ be a directed graph. Then there is a $C^*$-algebra $B$ generated by a Cuntz-Krieger $E$-family $\{s_e, p_v\}$ of non-zero elements such that, for every Cuntz-Krieger $E$-family $\{S_e, P_v\}$ of partial isometries on $\mathcal{H}$, there is a representation $\pi$ of $B$ on $\mathcal{H}$ such that $\pi(s_e) = S_e$, and $\pi(p_v) = P_v$, for all $v \in E^0$ and $e \in E^1$.

Remark 3.1.6: The $C^*$-algebra $B$ in theorem 3.1.5 is unique up to isomorphism, and we will denote it as $C^*(E)$. When $E$ has no sinks, the projections $P_v$ become redundant, and $C^*(E)$ is a Cuntz-Krieger $A_E$-family for the edge matrix $A_E$. Furthermore, if $E$ is finite and has no sinks, then $C^*(E)$ is isomorphic to $\mathcal{AO}_{A_E}$ of [2] ([14, Proposition 4.1, Corollary 4.8] and [2, Theorem 2.1]); if $A_E$ satisfies condition (I) of [8], then $C^*(E) \cong \mathcal{O}_{A_E}$. 
3.2. Uniqueness and Pure Infiniteness of $C^*(E)$

Although theorem 3.1.5 shows the existence of $C^*(E)$, there is no guarantee that the representation $\pi$ in theorem 3.1.5 is an injection. To ensure $\pi$ is an injection, there is a generalized form of Cuntz-Krieger’s condition $(I)$ (based on the structure of $E$) which allows $C^*(E)$ to be generated independent of the choice of partial isometries satisfying (3.1) or (3.2) (so $\pi$ is an injection). Condition $(I)$ can be interpreted in terms of the structure of the graph, and will be more useful for us.

There is a possibility that $C^*(E)$ can be generated by different sets of partial isometries $\{S_e\}_{e \in E^1}$ and $\{T_e\}_{e \in E^1}$ such that the map $S_e \mapsto T_e$ is not an isomorphism. For instance, suppose one has a graph whose edge shift matrix is

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$ 

Then $C^*(E)$ is also generated by a Cuntz-Krieger $\mathcal{A}$-family. Let

$$S_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad S_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$T_1 = S_1, \quad T_2 = -S_2.$$ 

Then both $\{S_1, S_2\}$ and $\{T_1, T_2\}$ form Cuntz-Krieger $\mathcal{A}$-families. If a canonical isomorphism between these two families existed, it would have to send $S_i$ to $T_i$ for $i = 1, 2$. However $T_2T_1 = -T_1^*T_1 = -S_1^*S_1 \neq S_2S_1$, so no such isomorphism exists.

Condition $(I)$ on a matrix ensures a canonical isomorphism between two Cuntz-Krieger $\mathcal{A}$-families without having to appeal to the gauge action of the unit circle $T$ (which is what is done to achieve an isomorphism in [2, Theorem 2.3]).

If $E = (E^0, E^1)$ is a directed graph, then we say a walk $\alpha$ is a loop based at $v \in E^0$ if $s(\alpha) = r(\alpha) = v$. We say a loop $\alpha = \alpha_1 \ldots \alpha_n$ has an exit if there exists a path $\beta = \beta_1 \ldots \beta_m$, with $\beta \neq \alpha$, $s(\beta) = s(\alpha)$, and $\beta_i \neq \alpha_i$ for some $i$. 

Definition 3.2.1: We say that $E$ satisfies condition (L) if and only if every loop in $E$ has an exit.

Remark 3.2.2: (see [15, Lemma 3.3]) Let $E$ be a directed graph with edge matrix $A_E$. If $E$ satisfies (L) then $A_E$ satisfies (I). If $E$ is a finite graph, (L) and (I) are equivalent.

Condition (L) ensures the existence of a canonical isomorphism between any two Cuntz-Krieger $E$-families without having to appeal to the gauge action of $T$, as condition (I) does for Cuntz-Krieger algebras. As remark 3.2.2 states, (L) is a generalization of (I).

Theorem 3.2.3: ([15, Theorem 3.7], [4]) Let $E$ be a row finite directed graph which satisfies condition (L). Suppose $B$ is a $C^*$-algebra generated by a Cuntz-Krieger $E$-family, $\{S_e, P_v\}$ with all $S_e$ non-zero. Then there is an isomorphism $\pi$ from $C^*(E)$ onto $B$ such that $\pi(s_e) = S_e$.

Finally, we state the theorem for $C^*(E)$ to be purely infinite.

Theorem 3.2.4: (see [4]) Let $E$ be a row finite directed graph which has no sinks. Then $C^*(E)$ is purely infinite if and only if $E$ satisfies condition (L) and every vertex connects to a loop.

Remark 3.2.5: If a matrix $A$ has non-zero integer entries. We say that $A$ satisfies condition (I) if and only if the corresponding edge shift matrix $A_E$ (remark 3.1.4) satisfies condition (I).

3.3. The Connecting Maps as Matrices

From this point on, we let $X$ be a shift space and $\mathcal{O}_X$ the $C^*$-algebra constructed in chapter 2. Define $A_X$ and $\mathcal{F}_X^\infty$ as in chapter 2. Recall from chapter 2 that there are two natural embeddings used to construct $\mathcal{F}_X^\infty$. 
1. If \( l > k \) then \( F^l_k \leftrightarrow F^{l+1}_k \) via \( A_l \leftrightarrow A_{l+1} \).

2. For \( k \in \mathbb{N} \), \( F^\infty_k \leftrightarrow F^\infty_{k+1} \) through the identification

\[
S_\mu a S^*_\nu = \sum_{\ell \in \mathbb{E}} S_\mu S^*_\ell S_\ell a S^*_\ell S^*_\nu.
\]

When the identifications above are restricted to the algebra \( A_X \), we shall refer to the first map as the inclusion operator, and the second map the Perron-Frobenius operator. The Perron-Frobenius operator sends \( a \in A_X \) to \( \sum S^*_\ell a S_\ell \). First, we define the inclusion operator on the basic building blocks of \( A_X \).

For each \( l \in \mathbb{N} \) let \( m = \dim(A_l) \) and \( n = \dim(A_{l+1}) \). Let \( P^l_i \) and \( P^{l+1}_j \), \( 1 \leq i \leq m \), \( 1 \leq j \leq n \) denote the minimal projections for \( A_l \) and \( A_{l+1} \) respectively, and regard \( P^l_i \) and \( P^{l+1}_j \) as elements in \( A_X \). Define an \( n \times m \) matrix \( I_{l,l+1} \) whose \( i \)th row and \( j \)th column are as follows:

\[
I_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } P^{l+1}_j \leq P^l_i \\ 0 & \text{otherwise.} \end{cases}
\]  

It is straightforward to check

\[
P^l_i = \sum_{j=1}^m I_{l,l+1}(j, i) P^{l+1}_j
\]

hence \( I_{l,l+1} \) is the matrix that makes the following diagram commute

\[
\begin{array}{ccc}
A_l & \xrightarrow{i} & A_{l+1} \\
\approx \downarrow & & \approx \downarrow \\
\mathbb{C}^m & \xrightarrow{I_{l,l+1}} & \mathbb{C}^n
\end{array}
\]

Matsumoto has defined a similar matrix in [20, Section 3], and it should be noted that the matrix defined in (3.3) is the transpose of Matsumoto’s.

To define the Perron-Frobenius matrix takes a bit more work. First a wee lemma.
Lemma 3.3.1: Suppose $P_s \neq P_t$, are minimal projections in $A_t$ and both projections are non zero. Then for any $\mu \in B(X)$, $S_\mu^* P_s S_\mu$ is perpendicular to $S_\mu^* P_t S_\mu$.

Proof. Recall that $S_\mu^* S_\mu^*$ commutes with the elements in $A_X$, thus

$$S_\mu^* P_s S_\mu \cdot S_\mu^* P_t S_\mu = S_\mu^* P_s P_t S_\mu S_\mu S_\mu = 0$$

because $P_s$ is perpendicular to $P_t$. □

Because of lemma 3.3.1, for each $I \in \Sigma$ we can define an $m \times n$ matrix $A_{t,l+1}^{(I)}$ whose $(i,j)$th entry is:

$$A_{t,l+1}^{(I)}(i,j) = \begin{cases} 1 & \text{if } S_{l}^* P_{l} S_{l} \geq P_{l+1}^* \\ 0 & \text{otherwise.} \end{cases}$$

Thus we define the $m \times n$ matrix

$$A_{t,l+1} = \sum_{I \in \Sigma} A_{t,l+1}^{(I)}.$$

Since dim($A_t$) = $m$ and dim($A_{t+1}$) = $n$, and both algebras are commutative and unital, we must have $A_t \cong \mathbb{C}^m$ and $A_{t+1} \cong \mathbb{C}^n$ (using as a basis $\{P_i^l\}_{i=1}^m$ and $\{P_j^{l+1}\}_{j=1}^n$ respectively). If we denote by $\lambda_{t,l+1} : A_t \rightarrow A_{t+1}$ as the Perron-Frobenius operator (restricted to $A_t$), then

$$A_t \xrightarrow{\lambda_{t,l+1}} A_{t+1} \xrightarrow{\cong} \mathbb{C}^m \xrightarrow{\cong} A_{t+1} \xrightarrow{\cong} \mathbb{C}^n$$

commutes. When doing calculations, it is best to keep track of the symbol $I$; at most times we will use the $A_{t,l+1}^{(I)}$ when dealing with $A_{t,l+1}$.

From this point on, let $X$ be a sofic shift. We have $A_X$ finite dimensional by corollary 2.3.2. Because of this, the inductive limit of $A_X$ must stabilise, (so, for some $l_0 \in \mathbb{N}$, $A_t = A_{t+1}$ for every $l \geq l_0 \in \mathbb{N}$), and the inclusion operators become identity.
matrices. The Perron-Frobenius operators, $\lambda_{l,t+1}$, will also stabilise whenever $l \geq l_0$, and each $A_{l,t+1}$ can be regarded as an $M \times M$ matrix, where $M = \dim(A_{l_0})$. Thus, $\lambda_X$ can be regarded as an $M \times M$ matrix also. From here on, fix a sofic shift $X$, and assume $l \geq l_0$ for this $X$, and $\dim(A_l) = M$.

Let $A$ be the $M \times M$ matrix representing the Perron-Frobenius operator for $A_X$ using the orthonormal basis $\{P_1, \ldots, P_M\}$ where $P_i$ is a characteristic function on a past equivalence class. Recall the map $\chi$ defined in equation (2.3); we have $x \in \chi(P_i)$ if and only if $P_i(x) = 1$, for each minimal projection $P_i \in A_X$ (when $P_i$ is viewed as a characteristic function).

**Lemma 3.3.2:** Let $P_i \in A_X$.

1. $S_l P_i \in O_X$ is non zero if and only if for every $x \in \chi(P_i)$, $Ix \in X^+$.
2. $P_i S_l \in O_X$ is non zero if and only if $Ix \in \chi(P_i^l)$ for some $x \in X$.

**Proof.** We prove (1) as the other is similar.

$$S_l P_i \neq 0 \iff S_l S_l^* S_l P_i \neq 0 \quad (S_l \text{ is a partial isometry})$$

$$S_l P_i S_l^* S_l \neq 0 \quad \text{(because $A_X$ is commutative).}$$

Note that $P_i S_l^* S_l \neq 0$ if and only if $S_l^* S_l \geq P_i$; using part (2) of proposition 2.3.1 this is equivalent to saying that for every $x \in \chi(P_i)$, $Ix \in X^+$. \hfill \Box

We give a condition when $A^{(I)}(i,j)$ is non-zero in terms of the one sided space $X^+$.

**Proposition 3.3.3:** The following are equivalent:

1. $S_l^* P_i S_l \geq P_j$.
2. For every $x \in \chi(P_j)$, $Ix \in \chi(P_i)$. 

3.3. The Connecting Maps as Matrices

50
3.4. That $O_X$ Equals $C^*(E_A)$

**Proof.** Follows from the proof of [19, Lemma 4.9], and Proposition 2.3.1. □

The next proposition can be obtained using induction on the length of the word $\mu$. The case for $n = 1$ is proposition 3.3.3

**Proposition 3.3.4:** Let $\mu \in B(X)$. The following are equivalent:

1. $S_\mu^* P_i S_\mu \geq P_j$,
2. for every $x \in \chi(P_j)$, the word $\mu x \in \chi(P_i)$.

3.4. That $O_X$ Equals $C^*(E_A)$

For this section, suppose $X$ is a sofic shift with $\dim(A_X) = M$. Let $A$ be the $M \times M$ matrix representing the Perron-Frobenius operator for $A_X$ using the orthonormal basis $\{P_1, \ldots, P_M\}$ where $P_i$ is a characteristic function on a past equivalence class. For each symbol $I \in \Sigma$, and $1 \leq i, j \leq M$ define the following partial isometry:

$$(3.6) \quad Q_{i,j}^{(I)} = P_i S_I P_j.$$ 

One can check that $Q_{i,j}^{(I)}$ is a partial isometry. Then:

**Lemma 3.4.1:** The partial isometry $Q_{i,j}^{(I)}$ defined in equation (3.6) is non-zero if and only if $S_I^* P_i S_I \geq P_j$.

Because each $A^{(I)}$ is a zero-one matrix we get:

**Corollary 3.4.2:** The partial isometry $Q_{i,j}^{(I)}$ defined in equation (3.6) is non-zero if and only if $A^{(I)}(i, j) = 1$.

**The proof of Lemma 3.4.1.** Note that

$$(3.7) \quad P_i S_I P_j \neq 0 \iff$$

$$(3.8) \quad P_i S_I S_I^* S_I P_j \neq 0 \quad S_I \text{ is an partial isometry}$$
3.4. That $\mathcal{O}_X$ Equals $C^*(E_A)$

But as $S_l S_l^*$ commutes with $A_X$, line (3.8) is equivalent to saying

$$S_l S_l^* P_i S_l P_j \neq 0 \iff S_l \left( \sum_{k=1}^{N} A(l)(i,k) P_k \right) P_j \neq 0 \iff A(l)(i,j) S_l P_j \neq 0 \Rightarrow A(l)(i,j) = 1$$

To show the converse, we see whenever $A(l)(i,j) = 1$, $S_l P_i S_l \geq P_j$. Multiplying both sides of the inequality on the right by $P_j$ gives us $S_l P_i S_l P_j \geq P_j$ which means $P_i S_l P_j \neq 0$. □

We remind the reader of the relationship between matrices with integer entries and edge shifts. Let $A = (A(i,j))_{1 \leq i, j \leq M}$ be an $M \times M$ matrix representing the Perron-Frobenius operator. Denote by $E_A$ the graph obtained from $A$ by drawing $A(i,j)$ edges from vertex $i$ to vertex $j$.

**Theorem 3.4.3:** Let $X$ be a sofic shift with $\mathcal{O}_X$ the corresponding $C^*$-algebra. Suppose that $l_0 \in \mathbb{N}$ satisfies $M = \dim(A_X) = \dim(A_l)$ for every $l \geq l_0$, and $A$ is the $M \times M$ matrix representing the Perron-Frobenius operator. Then there exists a Cuntz-Krieger $E_A$-family of partial isometries in $\mathcal{O}_X$.

**Proof.** Let $\{P_i\}_{i=1}^M$ be the orthogonal family of minimal projections for $A_X$. Let $E$ be the graph whose vertices $E^0 = \{P_i\}_{i=1}^M$. The edge set

$$E^1 = \{a^{(l)}_{i,j} : A(l)(i,j) = 1\}.$$

Therefore, we see that there is an edge from $P_i$ to $P_j$ if and only if $P_i S_l P_j \neq 0$ (equivalently, if $A(l)(i,j) = 1$). Let $Q_{i,j}^{(l)} = P_i S_l P_j$ be the corresponding partial
3.4. That $\mathcal{O}_X$ Equals $C^*(E_A)$

isometry for the edge $a_{i,j}^{(l)}$. Corollary 3.4.2 tells us $Q_{i,j}^{(l)} \neq 0$. Note that $s(a_{i,j}^{(l)}) = P_i$ and $r(a_{i,j}^{(l)}) = P_j$.

We must show the relations in equation (3.1) hold for our partial isometries $Q_{i,j}^{(l)}$.

We will show first that, if non-zero, $Q_{i,j}^{(l)}Q_{i,j}^{(l)} = P_{r(e)} = P_j$ whenever $Q_{i,j}^{(l)} = P_iS_lP_j$.

Note that

$$Q_{i,j}^{(l)^*}Q_{i,j}^{(l)} = P_jS_l^*P_iP_lS_lP_j$$

$$= P_j \left( \sum_{k=1}^{M} A^{(l)}(i,k)P_k \right) P_j$$

$$= P_j \quad \text{by corollary 3.4.2}$$

The second identity needed,

(3.9) \hspace{1cm} P_i = \sum_{\{e \in E^1 : s(e) = P_i\}} Q_eQ_e^*$$

can be seen as follows:

$$P_i = P_i \left( \sum_{l \in \Sigma} S_l S_l^* \right) P_i$$

because $\sum S_l S_l^* = 1$

$$= P_i \left( \sum_{l \in \Sigma} \left( \sum_{k=1}^{M} P_k S_l^* \right) P_i \right)$$

because $\sum_{k=1}^{M} P_k = 1$

$$= P_i \left( \sum_{l,k} S_l P_k P_l S_l^* \right) P_i$$

as $P_k$ is a projection

$$= \sum_{l,k} (P_i S_l P_k)(P_k S_l^* P_i)$$

$$= \sum_{l,k} Q_{i,k}^{(l)}Q_{i,k}^{(l)^*}$$

$$= \sum_{\{k,l : A^{(l)}(i,k) \neq 0\}} Q_{i,k}^{(l)}Q_{i,k}^{(l)^*}$$

by corollary 3.4.2

$$= \sum_{\{e = a_{i,j}^{(l)} : s(e) = P_i\}} Q_eQ_e^*$$
Therefore, (3.9) holds.

For each $P_i \in A_X$, there exists a $I \in \Sigma$ with $S_I^* P_i S_I \neq 0$. Thus every vertex $P_i \in E^0$ must have an edge $e \in E^1$ whose source is $P_i$. So the graph $E_A$ constructed from $A$ cannot have any sinks. Since $E_A$ is a finite graph, $C^*(E_A)$ is unique up to isomorphism ([15, Remark 1.3]).

**Theorem 3.4.4:** Let $X$ be a sofic shift. Then $O_X \cong C^*(E_A)$ where $E_A$ is the graph obtained from the edge matrix of the Perron-Frobenius operator $A$.

**Proof.** Theorem 3.4.3 certainly allows us to regard $C^*(E_A)$ as a subalgebra of $O_X$. It suffices to show that for each $I \in \Sigma$, $S_I \in C^*(E_A)$. This follows immediately because

$$S_I = \sum_{i,j=1}^{M} P_i S_I P_j,$$

and each individual summand is in $C^*(E_A)$.

Because $A$ is not necessarily a 0-1 matrix, we define $AO_A = AO_{A_E}$, where $A_E$ is the edge shift matrix of the graph $E_A$ (see remark 3.1.4). For the Perron-Frobenius operator $A$, $AO_A = C^*(E_A)$. Thus we have the following corollary.

**Corollary 3.4.5:** If $X$ is a sofic shift with Perron-Frobenius operator $A$, then $O_X \cong AO_{A_E}$.

**Remark 3.4.6:** It should be stressed that we have three ways of looking at a minimal projection $P_i \in A_X$ for sofic $X$.

1. As a minimal projection in a finite dimensional algebra, hence a diagonal matrix unit.
2. As a characteristic function of a past equivalence class.
3. As a vertex in a directed graph.
3.5. The Perron-Frobenius Operator as a Cover for a Sofic Shift

As we know, the Perron-Frobenius operator is an $M \times M$ matrix $A$ with non-negative integer entries, so we can associate an edge shift with this matrix. In this section, we shall show that the graph $E_A$ can be labeled to present the sofic shift $X$. This presentation is important for much of the theory on the structure of $O_X$.

Suppose $X$ is a sofic shift with $O_X$ its corresponding $C^*$-algebra. Let $A$ be the $M \times M$ matrix representing the Perron-Frobenius operator for $O_X$; we know from a previous section that

$$A = \sum_{i=1}^{N} A^{(i)},$$

and each $A^{(i)}$ is a 0-1 matrix by lemma 3.3.1. Let $E_A$ be the edge shift graph obtained from $A$. As we know from the proof of theorem 3.4.3, there is an edge from $P_i$ to $P_j$ (the minimal projections playing the role of vertices) for every $I \in \Sigma$ that satisfies $P_iS_I P_j \neq 0$. When such an edge exists, label it $I$.

By corollary 3.4.2, there is an edge labeled $I$ from $P_i$ to $P_j$ if and only if $A^{(i)}(i,j) = 1$. So we can regard the edge shift, $Y$ induced by the $E_A$ having symbol set

$$\{a_{i,j}^{(I)} : A^{(I)}(i,j) = 1\},$$

and the transition from $a_{i,j}^{(I)}$ to $a_{k,l}^{(J)}$ is allowed if and only if $k = j$.

**Proposition 3.5.1:** With the above construction, the one-block map $\pi : Y \to X$ given by $\pi : a_{i,j}^{(I)} \mapsto I$ is an onto cover of the sofic shift $X$ that intertwines the shift map.

**Proof.** It suffices to show for every word $\mu \in B(X)$ there is a word $\xi \in B(Y)$ with $\pi(\xi) = \mu$. Suppose $\mu \in B(X)$; it must be that there exists minimal projections
3.5. The Perron-Frobenius Operator as a Cover for a Sofic Shift

$P_i, P_j \in A_X$ with

$$S^*_{\mu} P_i S_{\mu} \geq P_j$$

by proposition 3.3.4. If $\mu = \mu_1 \ldots \mu_n$, we have that

$$S^*_{\mu_1} P_i S_{\mu_1} = \sum_{k \in K_1} P_k$$

where $K_1$ is a finite set. Furthermore

$$S^*_{\mu_2 \mu_1} P_i S_{\mu_1 \mu_2} = \sum_{k \in K_2} P_k$$

and $K_2$ is a finite set. We can thus conclude that there exists a $k \in K_2$, and $k' \in K_1$ with

$$S_{\mu_2} P_{k'} S_{\mu_2} \geq P_k,$$

thus there exists $1 \leq s \leq M$, such that $a^{\mu_1}_{i,k} a^{\mu_2}_{k',s} \in B(Y)$. Clearly, $a^{\mu_1}_{i,k} a^{\mu_2}_{k',s}$ has image under $\pi$ equal to $\mu_1 \mu_2$. We continue this way inductively to find a path $\xi = a^{\mu_1}_{i,k} \ldots a^{\mu_n}_{s,j}$ whose image under $\pi$ is $\mu$. \hfill $\Box$

The SFT $Y$ may or may not be the Krieger cover; we shall investigate this further in subsequent chapters. We shall refer to this presentation of $X$ as the Perron-Frobenius presentation. It is this shift $Y$ where most of the algebraic information regarding $O_X$ lies.

**Remark 3.5.2:** Recall that $A^{(\ell)}(i,j) = 1 \iff S^*_i P_i S_I \geq P_j$. Hence $a^{(\ell)}_{i,j}$ is a symbol in $Y$ if and only if $S^*_i P_i S_I \geq P_j$. This correspondence is important in decoding information about the sofic shift that $Y$ presents.

A one-block map on shift spaces $\pi : Y \to X$, is said to be left resolving if whenever $ab$ and $a'b$ are words of length two in $Y$, and $\pi(ab) = \pi(a'b)$ then $a = a'$. One can check that for sofic shifts, a left-resolving one-block map corresponds to a graph with a left resolving labeling.
Proposition 3.5.3: The map $\pi : Y \rightarrow X$ defined in proposition 3.5.1 is left resolving; thus, the labeled graph $(E_A, \pi)$ is a left resolving graph.

Proof. Suppose $a_{i,j}^{(l)}a_{j,k}^{(j)}$ and $a_{i,j}^{(l)}a_{i,k}^{(j)}$ are words of length two in $Y$ with the same image under $\pi$. Then by remark 3.5.2 on the symbols $a_{i,j}^{(l)}$ and $a_{i,j}^{(l)}$ we have

$$S_l^*P_iS_l \geq P_j \quad S_l^*P_iS_l \geq P_j.$$ 

By lemma 3.3.1, $P_i = P_i$, so $i = i'$.

Because of the above and [16, Proposition 8.11] we have the following:

Corollary 3.5.4: The above map $\pi : Y \rightarrow X$ is finite to one.

3.6. Uniqueness for $O_X$ in Terms of $C^*(E)$

With the power of realizing $O_X$ as a $C^*(E_A)$ for a directed graph $E_A$, we can apply the theory developed by [4, 14, 15] to get some equivalent definitions for uniqueness of $O_X$, and determine when $O_X$ is purely infinite. In [18, Corollary 7.4], Matsumoto states a condition for $O_X$ to be purely infinite. However, [18, Corollary 7.4] requires our AF-core to be simple; too strong a condition for many of our examples, as we shall see (cf. section 7.2). We shall find out exactly what the graph $E_A$ is in chapter 5.

Recall condition $(I_X)$ (definition 2.4.3) for a $C^*$-algebra $O_X$. We have the following theorem.

Theorem 3.6.1: Let $X$ be a sofic shift, with Perron-Frobenius operator $A$. Then the following conditions are equivalent:

1. $X$ satisfies condition $(I_X)$,
2. For every minimal projection $P \in A_X$ there is a non periodic point $x \in X^+$, (the one-sided sofic shift) with $x \in \chi(P)$,

3. $A$ satisfies condition $(I)$ of [8].

To prove this theorem, we will make use of some lemmas. We remind the reader of the map $\chi$ defined in equation (2.3) and the fact that $x \in \chi(P)$ if and only if $P(x) = 1$ when $P \in A_X$ is a minimal projection regarded as a characteristic function.

**Lemma 3.6.2:** If a minimal projection $P$ is such that $\chi(P)$ contains only periodic points in $X^+$, then there is only a single point $x_0 \in \chi(P)$.

**Proof.** Suppose $\chi(P)$ contains only periodic points, and there are two such points $x = \mu \mu \ldots$ and $y = \nu \nu \ldots \in X^+$. We can assume the words $\mu$ and $\nu$ are non-periodic. By proposition 3.3.4 both $S^*_\mu PS_\mu \geq P$ and $S^*_\nu PS_\nu \geq P$. Proposition 3.3.4 once again says that $z = \nu \mu \ldots \in \chi(P)$ and $z$ is non-periodic, a contradiction. □

The following corollary makes use of proposition 3.3.4 again.

**Corollary 3.6.3:** If $\chi(P)$ only contains a single periodic point $x = \mu \mu \ldots$, then $S^*_\mu PS_\mu = P$.

**Remark 3.6.4:** By the above corollary, if $P$ only contains a periodic point $x = \mu \mu \ldots$, where $\mu = \mu_1 \ldots \mu_n$, then $S^*_\mu PS_\mu = Q$, and if $y \in \chi(Q)$ then $y = \nu \nu \ldots$ where $\nu = \mu_2 \mu_3 \ldots \mu_n \mu_1$. We make use of proposition 3.3.4 once again.

**The proof of Theorem 3.6.1. (1) \Rightarrow (2):** Suppose $(I_X)$ is satisfied, but (2) does not hold. This means there exists a minimal projection $P_0$ such that $\chi(P_0) = \{\mu \mu \ldots\}$ (lemma 3.6.2). Because condition $(I_X)$ is satisfied, [19, Lemmas 5.1, 5.3] tell us that for every $l \in \mathbb{N}$, and $y \in X^+$, there exists a $z \neq y$ with $y$ $l$-past
3.6. Uniqueness for $O_X$ in Terms of $C^*(E)$

equivalent to $z$. Choosing $l$ large enough so that $\dim(A_l) = \dim(A_X)$, we must have a $z \in X^+$ that is $l$-past equivalent to, but not equal to $x$. However, this means that $z \in \chi(P_0)$, a contradiction. So (2) must hold.

(2) $\Rightarrow$ (1) : The most involved part of the proof; we shall show by the contrapositive. If condition $(I_X)$ is not satisfied, then by negating [19. Lemmas 5.1. 5.3], we get that there exists an $l \in \mathbb{N}$ and an $x \in X^+$ such that for every $y \in X^+$ with $y \neq x$, $y$ is not $l$-past equivalent to $x$. Since $l + 1$-past equivalence refines $l$ past equivalence, we can assume $l \geq l_0$ without loss of generality. This means that there exists a minimal projection $P_i \in A_X$ such that $\chi(P_i)$ only contains $x \in X^+$.

If $x = x_1x_2 \ldots$, proposition 3.3.4 tells us that $S_{x_1}^*P_iS_{x_1} \geq P_j$, for some $P_j$. Proposition 3.3.4 and remark 3.6.4 tell us the inequality is an equality, and $\chi(P_j)$ only contains a single point. We can continue this way inductively to conclude that $S_{x_1 \ldots x_n}^*P_iS_{x_1 \ldots x_n} = P_k$, and $\chi(P_k)$ contains a single point.

Because there are only finitely many minimal projections, we are forced to conclude there exists a projection $P_k$ that is repeated infinitely often as we continue to conjugate $P_i$ by longer and longer words of $x$. Since $\chi(P_k)$ only has a single point in it, that point must be periodic. Thus the contrapositive.

(2) $\Rightarrow$ (3) : Once again, we will prove this by the contrapositive. If condition $(I)$ is not satisfied, we must have that the graph obtained from the edge shift of $A$ has loop without an exit. Let $\xi = a_{i,j}^{(l)} \ldots a_{i,j}^{(K)}$ be this loop, and let $\mu = \pi(\xi)$, where $\pi$ is the quotient map defined in proposition 3.5.1. Since $\pi(a_{i,j}^{(l)})$ corresponds to $S_i^*P_iS_l \geq P_j$, and $\xi$ has no exit, the inequality is an equality, and one can continue and get $S_{\mu}^*P_iS_{\mu} = P_l$. Furthermore, because $\xi$ has no exit, there is no other $\nu \in B(X)$ satisfying $S_{\mu}^*P_iS_{\nu} \neq 0$. Thus as a characteristic function, $P_l(x) = 1$ if and only if $x = \mu\mu\ldots$, and therefore we have a minimal projection $P_l$ with $\chi(P_l)$ containing only a periodic point.
3.7. Pure Infiniteness of $O_X$ in Terms of $C^*(E)$

(3) $\Rightarrow$ (2): We show the contrapositive. Suppose $\chi(P_{i_0})$ contains only a periodic point $x = \mu_1 \mu \ldots$, where $\mu = \mu_1 \ldots \mu_n$. By lemma 3.6.2, $\{x\} = \chi(P_{i_0})$. Let $\pi : Y \rightarrow X$ be the presentation defined in proposition 3.5.1. By lemma 3.6.2, and remark 3.6.4 there is only one $j$ with $A^{(\mu_1)}(i_0, j_0) = 1$. This means, once we start at vertex $P_{i_0}$, there is only one edge, $a_{i_0,j_0}^{\mu_1}$, whose source is $P_{i_0}$. Thus $S_{\mu_1}^* P_{i_0} S_{\mu_1} = P_{j_0}$ and remark 3.6.4 tells us that $\chi(P_{j_0})$ has a single periodic point. Continuing this argument inductively, we are forced to conclude that the only $n$th edge we can end with once we start at vertex $P_{i_0}$ is of the form $a_{i_0,i_0}^{(\mu_n)}$. Thus we have a loop on $E_A$, and furthermore, this loop has no exit. The graph $E_A$ must not satisfy condition (L) of [15] and by remark 3.2.2 condition (I) of [8] cannot be satisfied. □

3.7. Pure Infiniteness of $O_X$ in Terms of $C^*(E)$

All the work has been done for purely infinite now; it's just a question of putting the puzzle pieces together. It is clear that $O_X$ will be purely infinite precisely when $C^*(E_A)$ is.

Remark 3.7.1: It should be noted that if $A$ is a Perron-Frobenius operator for a sofic shift $X$, the corresponding graph for $A$ does not have any sinks by the discussion following the proof of theorem 3.4.3. Because $E$ is finite and has no sinks, every vertex must connect to a loop. So if $A$ satisfies condition (I) also, $C^*(E_A)$ (and thus $O_X$) is purely infinite [15, Theorem 3.9].

Combining the theory of the $C^*$-algebras of graphs with the theory on $O_X$ developed before, we have the following theorem. We will repeat the conditions of theorem 3.6.1 for we shall need them.

Theorem 3.7.2: Let $X$ be a sofic shift with $E_A$ the directed graph corresponding to the Perron-Frobenius operator $A$. Then the following are equivalent:
1. $O_X$ is purely infinite,
2. $O_X$ satisfies condition $(I_X)$,
3. Every minimal projection $P \in A_X$ has a non-periodic point $x \in \chi(P)$.
4. $A$ satisfies condition $(I)$ of [8],
5. $E_A$ satisfies condition $(L)$,
6. $O_A$ is purely infinite (and isomorphic to $C^*(E_A)$).

**Remark 3.7.3:** That $O_A$ is isomorphic to $C^*(E_A)$ is in brackets in condition (6) because if $O_A$ is purely infinite, $A$ must satisfy condition $(I)$, since $O_A$ is defined to be $O_{A_E}$, and $O_{A_E} \cong C^*(E_A)$ (see remark 3.1.4).

**Proof.** The equivalence of (2), (3), and (4) was theorem 3.6.1. $(4) \iff (5)$ is remark 3.2.2; $(5) \iff (6)$ is theorem 3.2.4 and remark 3.7.1; Condition (1) is equivalent to condition (5) by theorem 3.4.4 and remark 3.7.1. □
CHAPTER 4

The Ideal Structure of $\mathcal{O}_X$

This chapter focuses on gauge invariant ideals for $\mathcal{O}_X$ when $X$ is sofic. As we know, $\mathcal{O}_X \cong C^*(E_A)$ and $C^*(E_A)$ also admits a gauge action (see [4]). We shall show that the gauge invariant ideals of $C^*(E_A)$ are in bijective correspondence with the gauge invariant ideals of $\mathcal{O}_X$ (in fact, the ideals are equal). We do this by first showing the method for finding the gauge invariant ideals of $\mathcal{O}_X$ for general $X$ as worked out in [19, Sections 6,7]. We then apply the theory for the case when $X$ is sofic to get our result. In our final section, we show that the AF-cores of $C^*(E_A)$ and $\mathcal{O}_X$ are equal.

4.1. The Gauge Invariant Ideals for $\mathcal{O}_X$

In this section, we can assume $X$ is any shift space with symbol set $\Sigma$. We follow [19] and include some sketch proofs for completeness. Recall the gauge action of $\mathbb{T}$ on $\mathcal{O}_X$ from chapter 2 defined as $\alpha_z(S_\mu) = z^{|\mu|}S_\mu$ for $S_\mu \in \mathcal{O}_X$ and $z \in \mathbb{T}$. A (closed two-sided) ideal $I$ of $\mathcal{O}_X$ is said to be gauge invariant if $\alpha_z(I) = I$ for every $z \in \mathbb{T}$.

If $X$ is any two sided shift space, define the set

$$\Gamma_X = \{(i,l) : i = 1, \ldots, \dim(A_i), l \in \mathbb{N}\}$$

with two kinds of partial orders $\succ$ and $\succeq$ on $\Gamma_X$ as follows:

1. $(i,l) \succeq (j,l+1)$ if $I_{l,l+1}(j,i) \neq 0$.
2. $(i,l) \succ (j,l+1)$ if $A_{l,l+1}(i,j) \neq 0$
4.1. The Gauge Invariant Ideals for $O_X$

where $I_{i,l+1}$ and $A_{i,l+1}$ are the inclusion and Perron-Frobenius operator respectively (cf. section 2.3).

For $(i, l)$ and $(j, m)$ in $\Gamma_X$ we say that $(i, l) \geq (j, m)$ if there exists $(i_1, l + 1)$, $(i_2, l + 2)$, $\ldots$, $(i_n, m - 1)$ satisfying

$$(i, l) \geq (i_1, l + 1) \geq (i_2, l + 2) \geq \ldots \geq (i_n, m - 1) \geq (j, m);$$

and $(i, l) \succ (j, m)$ is defined similarly.

If $H \subseteq \Gamma_X$ we say that $H$ is hereditary in $\geq$ if $(i, l) \geq (j, m)$ and $(i, l) \in H$, then $(j, m) \in H$. We define hereditary in $\succ$ similarly. If $H$ is hereditary in both orders, we say $H$ is hereditary.

**Definition 4.1.1:** Let $H$ be a hereditary subset of $\Gamma_X$, then $H$ is saturated in $\geq$ if $(i, l) \not\in H$ and $(i, l) \geq (j, l + 1)$ with $(j, l + 1) \in H$, then there exists $(k, l + 1) \not\in H$ with $(i, l) \geq (k, l + 1)$. We define saturated in $\succ$ similarly. If $H$ is saturated in both orders, we say that $H$ is saturated.

Given an hereditary subset $H \subseteq \Gamma_X$ we define its *saturation* as the smallest saturated subset containing $H$, and denote it $\overline{H}$; i.e.

$$\overline{H} = \bigcap \{G : G \text{ is saturated and } H \subseteq G\},$$

We see that $H \subseteq \overline{H}$ with equality if and only if $H$ is saturated.

**Lemma 4.1.2:** *see [19, Lemma 6.2]*) For a gauge invariant ideal $I$ in $O_X$, put

$$H_I = \{(i, l) \in \Gamma_X : P^l_i \in A_X \cap I\}.$$

Then $H_I$ is a saturated hereditary subset of $\Gamma_X$.

**Proof.** See the proof of [19, Lemma 6.2] to see why $H_I$ is hereditary. We need to show $H_I$ is saturated in the sense of definition 4.1.1.
4.1. The Gauge Invariant Ideals for $O_X$

Suppose $(k, l) \geq (i, l + 1)$ and $(i, l + 1) \in H_I$, $(k, l) \not\in H_I$. As $(k, l) \not\in H_I$ this means that $P^I_k \not\in I$. However, we know that

$$P^I_k = \sum_{s=1}^{\dim(A_k)} I_{l+1}(s, k) P^{s+1}_s.$$

And since $P^I_k \not\in I$ there must exist an $1 \leq s_0 \leq \dim(A_{l+1})$ with $P^{s_0+1} \not\in I$. This means that $(s_0, l + 1) \not\in H_I$. However $(k, l) \geq (s_0, l + 1)$ so $H_I$ is saturated in $\geq$.

To show $H_I$ is saturated in $\succ$, suppose that $(k, l) \not\in H_I$, and $(i, l + 1) \in H_I$ for every $i$ satisfying $(k, l) \succ (i, l + 1)$. This means that $P^I_k \not\in I$, but $\sum_{K \in \Sigma} S^*_K P^I_k S_K$ is in $I$. Because $I$ is an ideal, and $S^*_K P^I_k S_K$ is just a linear combination of minimal projections in $A_{l+1}$, we can assume $S^*_K P^I_k S_K \in I$ for each $K$ in the symbol set $\Sigma$. However, as $I$ is a two sided ideal this means that $S_K S^*_K P^I_k S_K S_K$ is also in $I$, for each $K \in \Sigma$. Because $S_K S^*_K$ commutes with $P^I_k$, it forces us to conclude that $S_K S^*_K P^I_k$ is also in $I$, hence so is the sum

$$P^I_k = \sum_{K \in \Sigma} S_K S^*_K P^I_k \in I,$$

a contradiction. Thus, $H_I$ is saturated in both orders. \qed

**Lemma 4.1.3:** (see [19, Lemma 6.3]) For a saturated hereditary subset $H$ of $\Gamma_X$ put

$$I_H = \text{span}\{S^*_\mu P^I_i S^{*}_\nu : (i, l) \in H\}.$$

Then $I_H$ is a gauge invariant ideal of $O_X$.

**Theorem 4.1.4:** (compare [19, Corollary 6.5]) There exists a bijection between the set of saturated hereditary subsets of $\Gamma_X$ and the gauge invariant ideals of $O_X$ via the map $I \mapsto H_I$.

**Remark 4.1.5:** We note that [19, Lemma 6.3] does not ask for a saturated hereditary subset. However, if the subset $H$ is not saturated, there is a chance that a
4.2. The Gauge Invariant Ideals for Sofic Shifts

Proper hereditary subset of $H$ may generate the same ideal. We shall see such an example (example 4.1.6).

When the shift $X$ is sofic, the order $\geq$ becomes trivial for any $l \geq l_0$, where $l_0 \in \mathbb{N}$ is the number satisfying $\dim(A_l) = \dim(A_{l_0}) = \dim(A_X)$. To see this, note that if $l \geq l_0$, then $(i, l) \geq (j, l + 1)$ if and only if $i = j$ because $I_{l,l+1}$ is an identity matrix whenever $l \geq l_0$. We shall use this fact for the next example, and the next section.

Example 4.1.6: As an example, suppose one has a sofic shift $X$ whose Perron-Frobenius operator looks like

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(we will see in chapter 7 this is the Perron-Frobenius Operator for the even shift). Now suppose $l_0 = 2$, then the set

$$H = \{(3, 100), (3, 101), (3, 102), \ldots \}$$

is hereditary. However, because $P_l^3 = P_{l_0}^3$ for every $l \geq l_0$, the set

$$G = \{(3, 2), (3, 2), (3, 4), \ldots \}$$

will generate the same gauge invariant ideal as $H$; this is the main reason one must saturate our hereditary subsets if one wants a bijective correspondence.

4.2. The Gauge Invariant Ideals for Sofic Shifts

For this section, assume $X$ is a sofic shift with $l_0 \in \mathbb{N}$ satisfying $\dim(A_l) = \dim(A_{l_0})$ for every $l \geq l_0$. As remarked in the previous section, the order $\geq$ becomes "trivial" in the sense that it just becomes an order on the non-zero integers whenever $l \geq l_0$. Thus, we only need to concern ourselves ultimately with $\geq$. Because this
4.2. The Gauge Invariant Ideals for Sofic Shifts

order ties in with the Perron-Frobenius operator $A$, we can actually show that the
gauge invariant ideals of $O_X$ are precisely those of $C^*(E_A)$. We shall do this from
the view of the graph $C^*$-algebra.

To find the gauge invariant ideals of $C^*(E)$, we follow [2, 4]. Since we are not
concerned with graphs with sinks, we assume that $E$ has no sinks. Let $E = (E^0, E^1)$
be a directed graph. For $v, w \in E^0$ we say that $v \geq w$ if there is a path $\alpha$ with
$s(\alpha) = v$ and $r(\alpha) = w$.

**Definition 4.2.1:** A subset $H^0$ of $E^0$ is said to be hereditary if $v \in H^0$ and $v \geq w$
implies $w \in H^0$. A hereditary set $H^0$ is said to be saturated if it contains all vertices
$v$ satisfying the condition that *every* edge $e$ with $s(e) = v$ has $r(e) \in H^0$.

If $H^0 \subseteq E^0$, then we denote its saturation $\overline{H^0}$ as the smallest saturated set
containing $H$. The following is an immediate consequence of [4, Lemma 4.2.1.
Remark 4.2.2] or [2, Theorem 3.5] and its proof.

**Theorem 4.2.2:** Let $E = (E^0, E^1)$ be a directed graph (with no sinks). Then there
exists a bijective correspondence between saturated hereditary subsets $H^0 \subseteq E^0$, and
closed, two-sided, gauge invariant ideals of $C^*(E)$.

If a graph $E$ is irreducible, then there are only two saturated, hereditary subsets,
$E^0$ and $\emptyset$. If $E$ is not irreducible, then it has irreducible sub-graphs, and roughly
speaking, the reducible parts of the graph will form proper, gauge invariant ideals
of $C^*(E)$. See [2, 4, 14] for more.

**Theorem 4.2.3:** Let $X$ be a sofic shift, with $\Gamma_X$ the set defined in the previous
section. Let $E_A = (E^0, E^1)$ be the graph obtained via the edge shift of the Perron-
Frobenius operator $A$. Then there is a bijective correspondence between saturated
hereditary subsets of $E^0$ and saturated hereditary subsets of $\Gamma_X$. 
4.2. The Gauge Invariant Ideals for Sofic Shifts

**Proof.** If $H^0$ is a saturated hereditary subset of $E^0 = \{P_i\}_{i=1}^M$ let

$$H_0 = \{(i, l) : P_i \in H^0, \text{ and } l \geq l_0\}$$

Clearly, $H_0$ is hereditary in $\geq$. To show $H_0$ is hereditary in $\succ$, suppose $(i, l) \succ (j, l + 1)$, and $(i, l) \in H_0$, then $S_K^* P_i S_K \succeq P_j$ for some $K$ in the symbol set $\Sigma$. Thus $A^{(K)}(i, j) = 1$, and $P_i$ is connected to $P_j$. As $H^0$ is hereditary, $P_j \in H^0$. Hence, $(j, l + 1) \in H_0$, so $H_0$ is hereditary in $\Gamma_X$.

It may not be the case that $H_0$ is saturated. However, we will show that when we form the saturation $\overline{H_0}$, we will only add elements of the form $(i, l)$ where $l < l_0$. Ultimately, this means that different saturated subsets of $E^0$ will generate different saturated subsets of $\Gamma_X$; this will give a one to one correspondence between the two sets.

Suppose that $\overline{H_0}$ adds elements of the form $(i, l)$ with $l \geq l_0$. Then there exists an $(i, l) \in \overline{H_0}$ with $l \geq l_0$, and $(i, l) \not\in H_0$. This means that for every $(j, l + 1) \in \Gamma_X$ satisfying $(i, l) \succ (j, l + 1)$, we must have $(j, l + 1) \in H_0$. However, by reinterpreting this in terms of the graph Perron-Frobenius operator $A$, it must be the case that every edge $e \in E^1$ with $s(e) = P_i$ must have $r(e) \in H^0$. Because $H^0$ is saturated, we are forced to conclude that $P_i \in H^0$. Thus $(i, l) \in H_0$, a contradiction. Thus, different saturated subsets of $E^0$ will generate different saturated subsets of $\Gamma_X$. So the correspondence is one to one.

Conversely, if one has a saturated hereditary subset $H_0 \subseteq \Gamma_X$, let

$$H^0 = \{P_i : (i, l) \in H, l \geq l_0\}.$$ 

Clearly, $H^0 \subseteq E^0$; if $P_i \succeq P_j$, and $P_i \in H^0$, then there is a walk connecting $P_i$ to $P_j$ by the definition if $H_0$ being hereditary in $\succ$, and the bijective correspondence
4.3. Equality of the AF-subalgebras

between minimal projections in $A_X$ and vertices on $E_A$. Thus $P_j \in H^0$ so $H^0$ is a hereditary subset of $E^0$.

We must show that $H^0$ is saturated. Suppose it is not. Then there exists a vertex $P_i \notin H^0$ with the property that every edge $e \in E^1$ with $s(e) = P_i$ has $r(e) \in H^0$. We denote by $j_1, j_2, \ldots, j_n$ the collection of indices satisfying $A(i, j_k) \neq 0$. As each $P_{j_k}$ is in $H^0$ by assumption, it must be that $(j_k, l_0 + 1) \in H_0$. Furthermore, if $(i, l_0) \succ (k, l + 1)$ then $(k, l + 1) = (j_s, l_0 + 1)$ for some $j_s$. Because $H_0$ is saturated in $\succ$, we must have $(i, l_0) \in H_0$. This forces $P_i \notin H^0$ — a contradiction. □

Remark 4.2.4: Theorems 4.1.4, 4.2.2, and 4.2.3 gives us a bijective correspondence between gauge invariant ideals of $O_X$ and gauge invariant ideals of $C^*(E_A)$. It is a routine but rather long calculation to show that the gauge invariant ideals for $C^*(E_A)$ are equal to the gauge invariant ideals of $O_X$. The result of the next section will reinforce this.

4.3. Equality of the AF-subalgebras

It is well known in the theory of Cuntz-Krieger algebras that $O_A \otimes K \cong FA \times \mathbb{Z}$. Here $FA$ is the AF-algebra generated by

$$\{Q_\gamma Q_\lambda^*: |\gamma| = |\lambda|\}.$$  

We warn that $\gamma$ and $\lambda$ here are words in the edge shift generated by the matrix $A$. In terms of $C^*(E)$, one can add that $r(\lambda) = r(\gamma)$ for walks of the same length on the graph (if it is not the case, $Q_\gamma Q_\lambda^* = 0$). Like the case for $O_X$, the AF-algebra is the fixed point algebra of a gauge action defined by

$$F(q) = \int_T \beta_z(q)dt, \text{ for } q \in O_A,$$
4.3. Equality of the AF-subalgebras

and \( \beta_z(Q_i) = zQ_i \) for \( z \in \mathbb{T} \) (the gauge action of general \( \mathcal{O}_X \) is a generalization of this). When the shift is a sofic shift, we can prove that the AF-algebras corresponding to \( \mathcal{O}_X \) and \( C^*(E_A) \) are the same. We will denote by \( \mathcal{F}_{E_A} \) the underlying AF-algebra of \( C^*(E_A) \).

**Theorem 4.3.1:** If \( \mathcal{O}_X = C^*(E_A) \), then \( \mathcal{F}_{X} = \mathcal{F}_{E_A} \).

**Lemma 4.3.2:** Suppose \( \gamma \) is a walk in \( E_A \) (so \( \gamma = \gamma_1 \gamma_2 \ldots \gamma_n \) with \( \gamma_i = a_{j_i,k_i}^{(r_i)} \) for each \( i \). Then

\[
Q_\gamma = \prod_{i=1}^{n} Q_i = P_{j_1} S_{\mu} P_{k_n}
\]

where \( \mu = I_1 I_2 \ldots I_n \)

**Proof.** We do this by induction on \( n \), the length of \( \gamma \). If \( n = 1 \) the hypothesis is a tautology. Suppose the lemma holds for \( m = n - 1 \), and let \( \gamma = \gamma_1 \ldots \gamma_n \) be a path of length \( n \) on \( E_A \). Then

\[
Q_\gamma = \prod_{i=1}^{n} Q_i
\]

(4.1) \( = P_{j_1} S_{\mu} P_{k_{n-1}} P_{j_n} S_{I_n} P_{k_n} \) by induction hypothesis.

and \( \mu = I_1 \ldots I_{n-1} \) is a word in \( X \). For (4.2) to be non-zero, it must be that \( k_{n-1} = j_n \). We thus get

\[
(4.2) = P_{j_1} S_{\mu} P_{j_n} S_{I_n} P_{k_n}
\]

\[
= P_{j_1} S_{\mu} P_{j_n} S_{I_n} S_{I_n}^* S_{I_n} P_{k_n}
\]

\[
= P_{j_1} S_{\mu} S_{I_n}^* P_{j_n} S_{I_n} P_{k_n}
\]

\[
= P_{j_1} S_{\mu} S_{I_n} P_{k_n}
\]

\[
= P_{j_1} S_{\mu I_n} P_{k_n}.
\]

Hence the statement is true for every \( n \), and the lemma is proved. \( \square \)
4.3. Equality of the AF-subalgebras

The proof of Theorem 4.3.1. Denote the fixed point algebra of the gauge action of $C^*(E_A)$ as $\mathcal{F}_{E_A}$. As in [14], $\mathcal{F}_{E_A}$ is generated by $Q_\gamma Q_\lambda^*$, where $r(\gamma) = r(\lambda)$ and $|\gamma| = |\lambda|$. If $\gamma = \gamma_1 \ldots \gamma_n$ then $Q_\gamma = Q_{\gamma_1} \cdots Q_{\gamma_n}$, and lemma 4.3.2 tells us $Q_\gamma = P_{\gamma_1} S_\mu P_{\gamma_n}$, for some $\mu \in B(X)$ and minimal projections $P_{\gamma_1}, P_{\gamma_n} \in A_X$. Similarly $Q_\lambda^* = P_{\lambda_n} S_\nu^* P_{\lambda_1}$. As $|\gamma| = |\lambda|$ it must be that $|\mu| = |\nu|$.

Suppose $Q_\gamma Q_\lambda^* \neq 0$, then $P_{\gamma_n} = P_{\lambda_n}$ and we have

\begin{equation}
Q_\gamma Q_\lambda^* = P_{\gamma_1} S_\mu P_{\gamma_n} S_\nu^* P_{\lambda_1}.
\end{equation}

Because $P_{\gamma_1}$ and $P_{\lambda_1}$ are in $A_X$, and $S_\mu P_{\gamma_n} S_\nu^*$ is in $\mathcal{F}_X^\infty$, we have $\mathcal{F}_{E_A} \subseteq \mathcal{F}_X^\infty$.

To show the other inclusion, it suffices to show for the generators of $\mathcal{F}_X^\infty$ of the form $S_\mu P_i S_\nu^*$ with $|\mu| = |\nu|$. As $1 = \sum_j P_j$, we have

\[
S_\mu P_i S_\nu^* = \sum_j (P_j S_\mu P_i)(P_i S_\nu^* \sum_j P_j);
\]

which yields $\mathcal{F}_X^\infty \subseteq \mathcal{F}_{E_A}$.

\[\square\]

Remark 4.3.3: The work of Katayama et. al. on $C^*$-algebras of the $\beta$-shifts [11], has shown that when a $\beta$-shift is not sofic, it is isomorphic to the Cuntz-Krieger algebra $\mathcal{O}_\infty$ (see the remark following Proposition 4.7 in [11]). The isomorphism is achieved using the classification theorem for nuclear, purely infinite $C^*$-algebras of Kirchberg [12] and Phillips [21]. In this case, the fixed point algebras are not isomorphic to each other. However, when a shift is sofic, $\mathcal{O}_X$'s fixed point algebra is always isomorphic to the fixed point algebra of its corresponding $\mathcal{O}_A$.

We will continue exploring sofic shifts and the structure of $\mathcal{O}_X$ in subsequent chapters.
5. The Structure of $O_X$ for Sofic Shifts

The theory presented in Chapters 3 and 4, especially theorem 3.4.4 tells us that for sofic $X$, there is a Cuntz-Krieger algebra that generates $O_X$. This algebra is none other than $C^*(E_A)$, where $E_A$ is the directed graph of the Perron-Frobenius operator $A$. We shall study this operator in more detail, as it contains much algebraic information about $O_X$, including (as we know from chapters 3 and 4) uniqueness, pure infiniteness, and the gauge invariant ideal structure of the algebra.

From the last section of chapter 3, we know that the Perron-Frobenius operator actually codes a left-resolving cover of the sofic shift $X$. In fact this cover is the past set cover for $X$; the matrix $A$ being the vertex matrix for the graph of the past set cover. As we know from theorem 1.7.1, the past set cover, when viewed as a graph, has a minimal sub-graph that is the left Krieger cover. We shall see that the analogy for $C^*$-algebras is the existence of a gauge invariant ideal $I$ of $O_X$ such that $O_X/I$ is isomorphic to the left Krieger cover graph $C^*$-algebra.

We can show how the matrix $A$ is related to the right Krieger cover. This gives an alternative equivalence relation on $X^+$ based on the future of a word $\mu \in B(X)$, rather than as a past equivalence class.

Focusing on the subclass of shifts of almost finite type (AFT), we will see that when $X$ is an irreducible AFT, $O_X$ always has a non-trivial, gauge invariant ideal. By modding out by this ideal, we can show that $O_X$ is isomorphic to the Cuntz-Krieger algebra of the minimal cover of the AFT described in [6] (we warn that in
[6], "minimal" means something different than fewest number of vertices, but both
the left and right Krieger covers for AFT's are minimal in the sense of [6]).

For most of this chapter, we focus on the irreducible sofic shifts. However, we
mention what can be obtained for reducible sofics in the last section.

5.1. The Presentation $\Sigma_A$ and the Past Set Cover

We now have the power to show that for any irreducible sofic shift $X$, there
exists an ideal $I$ (possibly equal to zero) such that $O_X/I$ is isomorphic to the C*-
algebra of the graph of the left Krieger cover [13]. From here on, we will let $X$ be
a (possibly reducible) sofic shift, and $\Sigma_R$, $\Sigma_L$, and $\Sigma_A$ the right Krieger cover, the
left Krieger cover, and Perron-Frobenius cover respectively. Let $\pi_R$, $\pi_L$, and $\pi_A$ be
the respective quotient maps onto $X$.

We saw how the past set cover was constructed in section 1.7. As a graph, its
vertices are past sets of walks $x$ in $X^+$, and there is an edge labeled $I$ from $P_X(x)$
to $P_X(y)$ if and only if $P_X(Iy) = P_X(x)$. Let $P_X(x_i)$, $1 \leq i \leq N$ be such that if
$x \in X^+$ then there is an $i$ with $P_X(x) = P_X(x_i)$. Let $O_X$ be the C*-algebra of the
sofic shift with $A_X$ the AF-algebra generated by $S_{\mu}^*S_{\mu}$, $\mu \in B(X)$.

Let $E_A = (E^0, E^1)$ be the graph of the Perron-Frobenius presentation. Let
$F = (F^0, F^1)$ be the graph of the past set presentation. We identify $E^0$ as the
collection of all minimal projections $P_i \in A_X$, and we identify $F^0$ as the set of all
past sets $P_X(x_i)$.

Using equation (2.3), we see that when $X$ is sofic The map $\eta^0 : E^0 \to F^0$ defined
by

$$\eta^0(P_i) = P(x_i) \text{ where } x_i \in \chi(P_i)$$

(5.1)
5.1. The Presentation $\Sigma_A$ and the Past Set Cover

is a bijection. This means the number of vertices in the past set graph and the Perron-Frobenius graph is the same. We will show that there is an edge (labeled $I$) from $P_X(x_i)$ to $P_X(x_j)$, if and only if $A^{(I)}(i,j) = 1$. Thus, the past set cover and the Perron-Frobenius cover are the same.

To show that the past set cover and $\Sigma_A$ have the same edges, we code the edge set of the past set cover, $F^1$ as follows: If there is an edge $f \in F^1$ labeled $I \in \Sigma$ from $P_X(x_i)$ to $P_X(x_j)$ then code the edge $f$ as follows

\[(5.2)\quad f \leftrightarrow (I, P_X(x_i), P_X(x_j)).\]

We code the Perron-Frobenius cover obtained from the graph $E_A$ similarly. Since the minimal projections form the vertices of the Perron-Frobenius cover, and there is an edge labeled $I$ from vertex $P_i$ to $P_j$ if and only if $A^{(I)}(i,j) = 1$ (equivalently $a^{(I)}_{i,j}$ is in the symbol set of $\Sigma_A$), we code each edge, $a^{(I)}_{i,j} \in E^1$ in the following manner

\[(5.3)\quad a^{(I)}_{i,j} \leftrightarrow (I, P_i, P_j).\]

Using equations (5.2) and (5.3) we have the following lemma.

**Lemma 5.1.1:**

1. The edge shift generated by the past set cover has symbol set $F^1$ defined in equation (5.2). The transition from $(I, P_X(x_i), P_X(x_j))$ to $(J, P_X(x_k), P_X(x_l))$ is allowed if and only if $j = k$.

2. The edge shift generated by the Perron-Frobenius cover’s symbol set $E^1$ can be recoded to those symbols defined in equation (5.3). The transition from $(I, P_i, P_j)$ to $(J, P_k, P_l)$ is allowed if and only if $j = k$. This recoding gives a conjugacy between the the edge shift with symbol set $a^{(I)}_{i,j}$ and the edge shift with symbol set defined in equation (5.3), and we will refer to both shifts as $\Sigma_A$. 
5.1. The Presentation $\Sigma_A$ and the Past Set Cover

We denote the edge shift in lemma 5.1.1 part 1 as $\Sigma^p_A$. Because each $P_X(x_i)$ can be identified with a minimal projection $P_i \in A_X$ via the map $\eta^0$ defined in equation (5.1), we get a well defined one block map $\eta^1 : \Sigma_A \to \Sigma^p_L$ by defining for each symbol in $\Sigma^p_L$:

$$\eta^1((I, P_i, P_j)) := (I, \eta^0(P_i), \eta^0(P_j)).$$

An immediate consequence of lemma 5.1.1, equations (5.1), (5.2), and (5.3) is:

**Proposition 5.1.2:** $\Sigma_A$ is conjugate via a one block map, $\eta^1$ defined in equation (5.4), to the past set cover, $\Sigma^p_L$. Thus, if $\mathcal{X}_X = C^*(E_A)$, then $E_A$ is the past set cover of $X$.

**Definition 5.1.3:** If $E = (E^0, E^1)$, and $F = (F^0, F^1)$ are graphs, we say that $\Phi = (\phi^0, \phi^1) : E \to F$ is a graph isomorphism if and only if $\phi^0 : E^0 \to F^0$ and $\phi^1 : E^1 \to F^1$ satisfy

1. Both $\phi^0$ and $\phi^1$ are bijections (one to one and onto).
2. If $e$ is an edge from $v_1 \in E^0$ to $v_2 \in E^0$ then $\phi^1(e)$ is an edge from $\phi^0(v_1)$ to $\phi^0(v_2)$.

Furthermore, if $E$ and $F$ are labeled by the same set, we say that $\Phi$ preserves the labels if both $e \in E^1$ and $\phi^1(e) \in F^1$ have the same label.

**Remark 5.1.4:** An example of a graph isomorphism is $\Phi = (\eta^0, \eta^1)$, defined in equation (5.1) and (5.4). Obviously, $\eta^1$ can be regarded as a map between edges. Isomorphic graphs have conjugate edge shifts. See [16, Chapter 2] for more on this. Certainly, if a graph isomorphism between $E$ and $F$ preserves labels, then the sofic shifts generated by the labeling of $E$ and $F$ are the same. Because the graphs of the Perron-Frobenius cover and past cover are isomorphic, and the labels in $X$ are
5.2. Reducing $\Sigma_A$ to the Left Krieger Cover

preserved by $\eta^0$ and $\eta^1$. We see that the following digram commutes:

$$
\begin{array}{ccc}
\Sigma_A & \xrightarrow{\eta^1} & \Sigma^p_L \\
\pi_A & \downarrow & \pi^p_L \\
X & \xrightarrow{id} & X
\end{array}
$$

where $\pi^p_L$ is the quotient map induced by the labeling of the past set cover.

5.2. Reducing $\Sigma_A$ to the Left Krieger Cover

Obviously $\Sigma_A$ is reducible precisely when $\Sigma^p_L$ is. So one must remove the reducible part of $A$. As we know from theorem 1.7.1, the left Krieger Cover is obtained from the past set cover by restricting to only those walks $x \in X^+$ that are magic walks. Let

$$E^0_A := \{P_i : S^*_\mu P_i S_\mu \neq 0 \text{ for some magic word } \mu\},$$

and define $\Sigma_A$ to be the edge shift whose vertices $P_i \in E^0_A$. So we reduce the edge shift $\Sigma_A$ to those symbols that correspond to $a_{i,j}^{(*)}$ (or $(*, P_i, P_j)$) whose $P_i$ and $P_j$ can be conjugated by magic words. The quotient map $\pi_A$ is obtained by restricting $\pi_A$. We will denote by $E_A = (E^0_A, E^1_A)$ the graph obtained from $E$ whose edge set is those $a_{i,j}^{(l)}$ with $P_i, P_j \in E^0_A$.

**Lemma 5.2.1:** The map $\pi_A : \Sigma_A \to X$ is onto.

**Proof.** It suffices to show by every word in $B(X)$ has a pre-image in $B(\Sigma_A)$. Certainly, every magic word has a preimage. If one takes a non-magic word, then one can extend it to a magic word by remark 1.8.4, thus every non-magic word also has a pre-image in $B(\Sigma_A)$. \qed

**Proposition 5.2.2:** The edge shift $\Sigma_A$ is conjugate via a one block map to $\Sigma_L$ where $\Sigma_L$ is the left Krieger Cover. The one block map is obtained by restricting $\eta^1$ to the edge shift generated by the graph $E_A$. 

5.2. Reducing $\Sigma_A$ to the Left Krieger Cover

**Proof.** Let $\tilde{\eta}^0 = \eta^0|_{E_A^0}$ and $\tilde{\eta}^1 = \eta^1|_{E_A^1}$. To prove this theorem, we will show that the tuple $\Phi = (\tilde{\eta}^0, \tilde{\eta}^1)$ is a graph isomorphism between $E_A$ and the left Krieger cover. Since $\Phi$ (and thus $\tilde{\Phi}$) preserves the labels for $X$, the result will follow.

We know that $E_A$ is isomorphic to the past set cover, and theorem 1.7.1 tells us that the past set cover has the left Krieger cover as a subgraph. Thus, to prove this theorem, it is enough to show that the restriction of $\eta^0$ is a bijection between $E_A^0$ and the vertices in the left Krieger cover (past sets of magic walks – see section 1.7). That $\tilde{\eta}^1$ is a bijection follows from equation (5.4).

To show $\tilde{\eta}^0$ is a bijection, we first show that if $P_i \in E_A^0$, then there exists an $x \in \chi(P_i)$ with $x$ a magic walk. Suppose $P_i \in E_A^0$, then there exists a magic word $\mu$ with

$$S^*_\mu P_i S_\mu \neq 0,$$

Hence $S^*_\mu P_i S_\mu \geq P_j$ for some $P_j \in A_X$. Let $y \in \chi(P_j)$. Proposition 3.3.4 tells us that $x = \mu y \in \chi(P_i)$. Furthermore equation (2.3) tells us that $\chi(P_i) = [x]$. Since $x$ is a magic walk, and $\eta^0$ is an injection, we see that $\tilde{\eta}^0$ is an injection into the vertex set of the left Krieger cover.

We must show that $\tilde{\eta}^0$ is a surjection. If $P_X(x_i)$ is a vertex in the left Krieger cover, then $x_i \in X^+$ satisfies $x_i \sim_\infty y$ and $y \in X^+$ is a magic walk. So with no loss of generality, we can assume $x_i$ is a magic walk. Write $x_i = \mu x'$ where $\mu$ is magic and $x \in X^+$. As $x \in X^+$, $x \in \chi(P_j)$ for some $j$. Let $P_i = (\eta^0)^{-1}(P_X(x_i))$. We must show $P_i \in E_A^0$. Using proposition 3.3.4 we see that

$$S^*_\mu P_i S_\mu \geq P_j,$$

and as $\mu$ is magic, $P_i \in E_A^0$. Thus $\tilde{\eta}^0$ is a bijection, and the proposition is proved. □

Because the left Krieger cover is irreducible whenever $X$ is, we have the following corollary.
Corollary 5.2.3: If $X$ is an irreducible sofic shift, then the edge shift $\Sigma_A$ constructed above is irreducible.

If $E_A = (E^0, E^1)$ is the Perron-Frobenius graph of $\mathcal{O}_X$, let $H^0 = E^0 \setminus E_A^0$. We can show that $H^0$ is hereditary and saturated in the sense of definition 4.2.1. Thus by theorem 4.2.2, $H^0$ corresponds to a gauge invariant ideal $I$ in $C^*(E_A)$.

Lemma 5.2.4: The set $H^0$ defined above is hereditary and saturated (or the empty set).

Proof. If $H^0$ is the empty set, there is nothing to prove. We suppose $H^0 \neq \emptyset$ is not hereditary. This means there exists a $P_i \in E_A^0$ and $P_j \in H^0$ with $P_j \succ P_i$, which meant there is a path $\nu$ connecting $P_j$ to $P_i$. Thus,

$$S^*_\nu P_j S_\nu \succeq P_i,$$

for some $\nu \in B(X)$. Furthermore, as $P_i \in E_A^0$, $S^*_\mu P_i S_\mu \neq 0$, for some magic word $\mu$. However, this means that

$$S^*_\mu (S^*_\nu P_j S_\nu) S_\mu \neq 0$$

and as $\mu \nu \in B(X)$ must be magic, we are forced to conclude $P_j \in E_A^0$, a contradiction.

We must show $H^0$ is saturated. This follows because any $P_i \in E_A^0$ cannot have all its edges going into $H^0$. If this was the case, $S^*_\mu P_i S_\mu = 0$ for any magic word $\mu$. □

Theorem 5.2.5: Let $X$ be a sofic shift and $\mathcal{O}_X$ the corresponding $C^*$-algebra. Then there exists a gauge invariant ideal $I$ (possibly $I = \{0\}$) such that the quotient $\mathcal{O}_X/I$ is isomorphic to the $C^*$-algebra of the graph of the left Krieger cover.
5.2. Reducing $\Sigma_{A}$ to the Left Krieger Cover

Proof. By theorem 3.4.4 and proposition 5.1.2 $\mathcal{O}_X = C^*(E_A)$ and $E_A$ is the past cover for $X$. Proposition 5.2.2 tells us that $E_A$ has a sub-graph isomorphic to the left Krieger cover, namely $E_A = (E_A^0, E_A^1)$. Let $H^0 = E^0 \setminus E_A^0$.

If $H^0 = \emptyset$ then it must be that the past set cover equals the left Krieger cover. Let $I = \{0\}$, and the result follows by proposition 5.2.2. If $H^0 \neq \emptyset$ then lemma 5.2.4 shows $H^0$ is saturated and hereditary, and thus corresponds to a gauge invariant ideal $I$ in $C^*(E_A)$. Remark 4.2.4 tells us that $I$ is also gauge invariant in $\mathcal{O}_X$. Finally [2, Theorem 3.5] and [14, Proposition 4.1] tell us that $\mathcal{O}_X/I = C^*(E_A)/I$ is isomorphic to $C^*(E_A)$. As $E_A$ is the left Krieger cover by proposition 5.2.2, this completes the proof.

Corollary 5.2.6: Let $X$ be an irreducible sofic shift with left Krieger Cover $\Sigma_L$. Then there exists a maximal (possibly zero) ideal $I \subset \mathcal{O}_X$ with $\mathcal{O}_X/I$ isomorphic to the Cuntz-Krieger algebra corresponding to the edge shift $\Sigma_L$. Furthermore this Cuntz-Krieger algebra satisfies condition (I) of [8].

Proof. By theorem 5.2.5 there exists a gauge invariant ideal $I$ with $\mathcal{O}_X/I = C^*(E_A)/I$ isomorphic to the left Krieger cover graph $C^*$-algebra. Now since $X$ is irreducible, $E_A$ must satisfy condition (L), so $C^*(E_A)$ can be generated independent of the choice of isometries. As $E_A$ is a finite graph, $C^*(E_A)$ is generated by a Cuntz-Krieger $A_E$ family where $A_E$ is the edge shift matrix of the graph $E_A$ [14, Proposition 3.1]. Because $E_A$ satisfies condition (L), $A_E$ satisfies condition (I) of [8]. We know that $C^*(E_A) \cong \mathcal{O}_{A_E}$, and irreducibility also allows us to conclude that $\mathcal{O}_{A_E}$ simple [8, Theorem 2.14]. Thus $I$ must be a maximal ideal.

Remark 5.2.7: If we denote by $\tilde{S}_\mu$, $\mu \in B(X)$ the image of $S_\mu$ in $\mathcal{O}_X/I$ above, then $\tilde{S}_\mu$ clearly generates $\mathcal{O}_X/I$. It can also be shown that $\tilde{S}_\mu$, $\tilde{S}_\mu^*$, and their corresponding initial and final projections are non-zero in $\mathcal{O}_X/I$. The relations $S_\mu$ satisfies in
5.3. The Minimal Projections and the Right Krieger Cover

$\mathcal{O}_X$ (see (1) of theorem 2.4.6) will also be satisfied by $\tilde{S}_\mu$. Furthermore, if the left Krieger cover satisfies condition (L), then the algebra $\mathcal{O}_X/I$ will satisfy Matsumoto’s condition $(I_X)$. This follows by theorem 3.6.1 applied to the generators of $\mathcal{O}_X/I$. In this case, the quotient algebra no longer will have those minimal projections in $A_X$ that correspond only to periodic points.

5.3. The Minimal Projections and the Right Krieger Cover

This section is devoted to showing how the Perron-Frobenius operator is related to the right Krieger cover constructed in [13]. To do so, we shall give an equivalent definition of $l$-past equivalence in terms of the future of a word, rather than its past. The reason for this is twofold: first, one should be optimistic and look towards the future, rather than the past, and second, it shows how the left and right Krieger covers are related.

If $\mu \in B(X)$, then lemma 2.1.1 tells us $S_\mu^* S_\mu = S_\nu^* S_\nu$ if and only if

$$\{x \in X^+ : \mu x \in X^+\} = \{x \in X^+ : \nu x \in X^+\} \iff F_X(\mu) = F_X(\nu)$$

Thus, $S_\mu^* S_\mu$ can be regarded as the characteristic function of the follower set of $\mu$. I.e. for $x \in X^+$

$$S_\mu^* S_\mu(x) = \begin{cases} 1 & \text{if } x \in F_X(\mu), \\ 0 & \text{otherwise.} \end{cases}$$

As the collection of all follower sets is finite, we only have finitely many such $S_\mu^* S_\mu$'s.

**Lemma 5.3.1:** Suppose $X$ is a sofic shift.

1. If $\mu_i, 1 \leq i \leq n$ is a set of words of $X$ with the property that for any word $\nu$,

$$F_X(\nu) = F_X(\mu_i) \text{ for some } i,$$

then $A_X$ is generated by $S_\mu^* S_\mu$. 


5.3. The Minimal Projections and the Right Krieger Cover

2. If \( \mu_i, 1 \leq i \leq L \) are magic words with the property that if \( \nu \) is a magic word, 
\[ F_X(\nu) = F_X(\mu_i), \] 
then \( A_X \) is generated by \( S_{\mu_i}^*, S_{\mu_i} \).

**Proof.** (1) is clear from lemma 2.1.1. (2) follows because if \( \nu \) is a non magic word, then \( F_X(\nu) \) is a union of follower sets of magic words (part (1) of remark 1.9.1), say \( \cup F_X(\mu_i) \). By taking the appropriate sums and products of the \( S_{\mu_i}^*, S_{\mu_i} \)'s. one can obtain \( S_{\nu}^* S_{\nu} \).

Let \( E = (E_R, E_R^1, \Sigma, \pi_R) \) be the right Krieger cover graph for the sofic shift \( X \). We can identify \( E_R^0 \) as \( \{ F_X(\mu_1), F_X(\mu_2), \ldots, F_X(\mu_L) \} \), where each \( F_X(\mu_i) \) is a follower set of a magic word \( \mu_i \). By extending each \( \mu_i \) to the left, we can assume each \( \mu_i \) satisfies \( |\mu_i| = l_1 \geq l_0 \), where \( \dim(A_{\mu}) = \dim(A_X) \).

We define an equivalence relation called *follower set equivalence* as follows. For \( x, y \in X^+ \), we say that \( x \) is follower set equivalent to \( y \) (denoted \( x \sim_f y \)) if and only if
\[ x \in F_X(\mu_i) \iff y \in F_X(\mu_i), \text{ for all } 1 \leq i \leq L, \]
(so \( x \) and \( y \) are in the same follower sets). Because we identify follower sets as vertices on the right Krieger cover graph of \( X \), \( F_X(\mu) \) is in \( s(x) \) if and only if \( x \in F_X(\mu) \). We therefore can conclude that
\[ s(x) = s(y) \iff x \sim_f y. \]

Recall the \( l \)-past equivalence relation used in chapter 2 to obtain the minimal projections of \( A_X \). We shall see that \( \sim_l \) and \( \sim_f \) are the same whenever \( l \geq l_1 \).

**Proposition 5.3.2:** If \( X^+ \) is a one-sided sofic shift, and \( l \geq l_1 \), then the \( l \)-past equivalence classes of \( X^+ \) are the same as the follower set equivalence classes of \( X^+ \).
5.3. The Minimal Projections and the Right Krieger Cover

**Proof.** Suppose $x \sim_f y$, then $s(x) = s(y)$ on the right Krieger cover graph. Suppose $\nu \in B(X)$ with $|\nu| \leq l$. If $\nu x \in X^+$, we must have

$$\emptyset \neq r(\nu) \cap s(x) = r(\nu) \cap s(y).$$

Thus, both $\nu x \in X^+$ and $\nu y \in X^+$. Since $\nu$ was arbitrary, we conclude

$$\{\nu : |\nu| \leq l, \nu x \in X^+\} = \{\nu : |\nu| \leq l, \nu y \in X^+\}$$

so $x \sim_l y$.

Conversely if $x \sim_l y$ and $l \geq l_1$ then

$$\{\nu : |\nu| \leq l, \nu x \in X^+\} = \{\nu : |\nu| \leq l, \nu y \in X^+\}.$$  

We will show that $s(x) = s(y)$ on the right Krieger cover graph, hence $x \sim_f y$. Suppose not. With no loss of generality, this means there exists a $F_X(\mu_i) \in s(y)$ but $F_X(\mu_i) \notin s(x)$. This means that $\mu_i y \in X^+$, but $\mu_i x \notin X^+$ for some magic word $\mu_i$. As $l_0 \leq |\mu_i| \leq l$, we are forced to conclude that $x \not\sim_l y$, a contradiction. □

**Corollary 5.3.3:** Each minimal projection $P \in A_X$ corresponds to an equivalence class of the follower set equivalence relation.

Throughout this section, we will be referring to a minimal projection $P \in A_X$ as a characteristic function of a follower set equivalence class. We will return to the past equivalence relation in subsequent sections.

We now make an assumption we will use throughout the remainder of this section. Assume that for all magic words $\mu_i, \mu_j$ with $F_X(\mu_i) \neq F_X(\mu_j)$, we have $F_X(\mu_i) \not\subseteq F_X(\mu_j)$. Lemma 1.9.7 shows this happens if $X$ is an AFT of degree zero. We shall discuss what to do when one follower set is a subset of another in remark 5.3.10.

Let $M = \dim(A_X)$. Choose $x_1, x_2, \ldots, x_M \in X^+$ a member from each follower set equivalence class. We also order the members as follows: we say $x_i$ precedes
5.3. The Minimal Projections and the Right Krieger Cover

If $x_i$ if and only if the cardinality of the source of $x_i$ is less than that of $x_j$. If the cardinalities are equal, use the lexicographical ordering on $F_X(\mu_1), \ldots, F_X(\mu_L)$ (where $F_X(\mu_1) > F_X(\mu_2) > \ldots > F_X(\mu_L)$). Because each $x_i$ is in a different follower set equivalence class, it has a corresponding minimal projection $P_i \in A_X$ with the property that $P_i(x_i) = 1$, and $P_j(x_i) = 0$ for every $j \neq i$. We order the $P_i$'s based on the same order as their corresponding $x_i$'s.

Since for any two magic words $\mu_i, \mu_j$, $F_X(\mu_i) \not\subset F_X(\mu_j)$, it must be that for each magic word $\mu_i$, there exists an $x \in F_X(\mu_i)$, and $x \not\in F_X(\mu_j)$. Obviously, such $x$ has its source a singleton set $\{F_X(\mu_i)\}$. Therefore, our first $L$ representatives, $x_1, \ldots, x_L$ are precisely the elements in $X^+$ with the property that $s(x_i)$ is the singleton set $\{F_X(\mu_i)\}$. Thus, we regard the first $L$ minimal projections, when viewed as characteristic functions on follower set equivalence classes as

$$
P_i(x) = \begin{cases} 
1 & \text{if } s(x) = s(x_i) = \{F_X(\mu_i)\} \\
0 & \text{otherwise.} 
\end{cases}
$$

for $1 \leq i \leq L$. Thus, as a characteristic function, each $P_i$ is non zero only to those elements $x \in X^+$ whose source is $\{F_X(\mu_i)\}$.

We can then look at those $x_i$ whose source has cardinality 2. For these $x_i$, we can regard the minimal projection $P_i$ as the characteristic function of those $x \in X^+$ satisfying $s(x) = s(x_i)$, and the cardinality of the source is 2. Continue this way until we have exhausted all $M$ equivalence class representatives. We shall denote the cardinality of the source of $x$ as $\#s(x)$.

Remark 5.3.4: Recall how the map $\chi$ from equation (2.3) allowed us to identify a minimal projection $P \in A_X$ with a subset of $X^+$. We have a similar idea from the
5.3. The Minimal Projections and the Right Krieger Cover

follower set point of view. It is clear that if \( s(x_i) = \{F_X(\mu_i)\}_{s=1}^k \) then

\[
x_i \in \bigcap_{s(x_i)} F_X(\mu_i).
\]

So we can regard the minimal projection \( P_i \) as

\[
P_i = \prod_{F_X(\mu_i) \in s(x_i)} S_{\mu_i}^* S_{\mu_i} \prod_{F_X(\mu_i) \notin s(x_i)} (1 - S_{\mu_i}^* S_{\mu_i}).
\]

Therefore, each minimal projection \( P_i \) corresponds to a characteristic function of those \( x \in X^+ \) in an intersection of follower sets. Furthermore, if \( P_i(x) = 1 \), then for any larger collection \( S \), of follower sets satisfying

\[
s(x) \subseteq S \text{ and } \bigcap_{F_X(\mu) \in S} F_X(\mu) \neq \emptyset,
\]

\( x \) will not be in the above intersection. So the intersection of the follower sets in the source of \( x_i \) uniquely determines \( P_i \). We will use this fact in the proof of some theorems, and will find it a useful correspondence when doing the examples in chapter 7.

Recall the map \( \chi \) defined in (2.3). In light of the above remark, we can regard the map \( \chi \) as a function from the minimal projections to the follower set equivalence class via

\[
\chi(P_i) = \{x \in X^+ : s(x) = s(x_i)\}
\]

We will use this definition of \( \chi \) throughout this section.

We will see that the matrix \( A \) has a structure related to the right Krieger cover as follows. For each symbol \( I \in \Sigma \), the matrix \( A^{(I)} \) relates in the following way to the right Krieger cover of \( X \). Based on our ordering of the minimal projections we
break $A^{(l)}$ into a block matrix

$$A^{(l)} = \begin{bmatrix} A_1^{(l)} & A_3^{(l)} \\ A_2^{(l)} & A_4^{(l)} \end{bmatrix},$$

where $A_1^{(l)}$ is $L \times L$. Roughly speaking (using remark 5.3.4), $A_1^{(l)}$ represents the transitions labeled $I$ from follower sets to follower sets. $A_2^{(l)}$ represents transitions labeled $I$ from intersections of follower sets to follower sets. $A_3^{(l)}$ represents transitions labeled $I$ from follower sets to intersections of follower sets, and $A_4^{(l)}$ represents transitions labeled $I$ from intersections of follower sets to intersections of follower sets.

**Proposition 5.3.5:** Let $X$ be sofic with symbol set $\Sigma = \{1, \ldots, n\}$ and distinct magic words $\mu_1, \ldots, \mu_L$. Order the minimal projections in $A_X$ as above. If $E = (E^0, E^1, \pi, \Sigma)$ is the right Krieger cover of $X$, we identify $E^0$ as $\{F_X(\mu_i)\}_{i=1}^L$. Then for each $I \in \Sigma$ we have an $M \times M$ block matrix

$$A^{(l)} = \begin{bmatrix} A_1^{(l)} & A_3^{(l)} \\ A_2^{(l)} & A_4^{(l)} \end{bmatrix},$$

where $A_1^{(l)}$ is $L \times L$ satisfying:

1. For $1 \leq i, j \leq L$, $A_1^{(l)}(i, j) = 1$ if and only if there is an edge $e$ labeled $I$ satisfying $s(e) = F_X(\mu_i)$, $r(e) = F_X(\mu_j)$, and $e$ is the only edge labeled $I$ whose range is $F_X(\mu_j)$.

2. For $1 \leq j \leq L$, and $L + 1 \leq i \leq M$ we have $s(x_i) = \{F_X(\mu_i), \ldots, F_X(\mu_s)\}$, $s > 1$. Then $A_2^{(l)}(i, j) = 1$ if and only if there are exactly $s$ edges $e_1, \ldots, e_s$ satisfying $r(e_k) = F_X(\mu_j)$, $\pi(e_k) = I$, and $s(e_k) = F_X(\mu_{ik})$ for $1 \leq k \leq s$.

3. If $X$ is an edge shift, then $A^{(l)} = A_1^{(l)}$, and $A$ is $L \times L$.

**Proof.** If $1 \leq i, j \leq L$, then $A_{ij}^{(l)} = 1$ if and only if $S_i^* P_i S_i \geq P_j$, which is equivalent to saying $Ix \in \chi(P_i)$ for every $x \in \chi(P_j)$ (theorem 3.3.3). We know
5.3. The Minimal Projections and the Right Krieger Cover

that \( x_j \in \chi(P_j) \), and \( x_i \in \chi(P_i) \). Furthermore, it must be that \( s(x_j) = \{F_X(\mu_j)\} \) and \( s(x_i) = \{F_X(\mu_i)\} \). Since \( Ix_j \in \chi(P_j) \) (proposition 3.3.4), it must be that \( s(Ix_j) = s(x_i) = \{F_X(\mu_i)\} \). As the right Krieger cover graph is right resolving, we conclude that \( F_X(\mu_i I) = F_X(\mu_j) \). One argues similarly for part (2). Part (3) follows from the fact that if \( x \in X^+ \) and \( X^+ \) is an edge shift, then \( \#s(x) = 1 \) for every \( x \).

Remark 5.3.6: In proposition 5.3.5, one can use similar techniques to those used in its proof to find transitions between pairwise intersections (remark 5.3.4), and pairwise intersections; then one could go to triple intersections, and so forth. The structure of \( A^{(f)}_3 \) from the follower set point of view can be calculated using proposition 3.3.3.

Because of proposition 5.3.5 we see that the matrix \( A \) is none other than

\[
A = \sum_{I \in \Sigma} A^{(f)}
\]

so we can regard \( A \) as having a block structure based on the follower set presentation. This gives us the following theorem.

Theorem 5.3.7: Let \( X \) be sofic with symbol set \( \Sigma = \{1, \ldots, n\} \), and \( L \) distinct follower sets. If the minimal projections are ordered as in proposition 5.3.5, then the Perron-Frobenius operator is an \( M \times M \) matrix of the following form:

\[
\begin{bmatrix}
A_1 & A_3 \\
A_2 & A_4
\end{bmatrix}
\]

Where \( A_1 \) is \( L \times L \), and \( A_2 = 0 \) if and only if the sofic shift is an AFT of degree zero. Also, if \( X \) is an edge shift, then \( L = M \).

Proof. The first part is shown in the discussion preceding the theorem.
5.3. The Minimal Projections and the Right Krieger Cover

For the second part of the theorem, we will use a lemma whose proof is similar to that of proposition 1.9.4.

**Lemma 5.3.8:** Let $X$ be a sofic shift. Then $X$ is an AFT of degree zero if and only if for every $x \in X^+$ with $\#s(x) > 1$

$$\bigcap_{F_{X}(\mu_i) \in s(x)} F_{X}(\mu_i)$$

contains only those $x \in X^+$ made up of non-magic walks.

We can now prove the second part of the theorem. Suppose $A_2 = 0$. This occurs if and only if $A_2^{(I)} = 0$ every symbol $I$. Using remark 5.3.4, and proposition 3.3.4 this is equivalent to saying that for each $x \in X^+$ with $\#s(x) > 1$

$$\bigcap_{F_{X}({\mu}) \in s(x)} F_{X}({\mu})$$

has no magic walks. Use lemma 5.3.8. The final part follows from part (3) proposition 5.3.5. \qed

**Remark 5.3.9:** We note that as an embedding map in $\mathcal{F}_k^\infty \rightarrow \mathcal{F}_{k+1}^\infty$ (see equation (2.1)), the transpose of $A$ is used. This makes the K-theory formulae for $\mathcal{O}_X$ consistent with theorem 2.2.3.

**Remark 5.3.10:** Throughout this section, we assumed that $F_{X}(\mu_i) \not\subset F_{X}(\mu_j)$ for $i \neq j$. If it happens to be the case that one follower set is a subset of another, then part (2) of proposition 5.3.5 will still hold. If $F_{X}(\mu_i) \not\subset F_{X}(\mu_j)$, then any $x \in F_{X}(\mu_i)$ will also be in $F_{X}(\mu_j)$ so $\#s(x) > 1$. Thus, we generalize our order slightly to compensate for this. The first $L$ projections are ordered as follows: If $P$ is such that $P(x) = 1$ where $s(x) = \{F_{X}(\mu_{i_i})\}_{i=1}^{s}$ ($s \geq 1$) and

$$F_{X}(\mu_{i_1}) \not\subset F_{X}(\mu_{i_2}) \not\subset \ldots \not\subset F_{X}(\mu_{i_s})$$
then place $P$ in the $i_1$ position. We do this because if $P(x) = 1$ and $s(x) = \{F_X(\mu_i)\}_{i=1}^t$ defined above, then if $y \notin F_X(\mu_i)$ but $y \in F_X(\mu_i)$ for $t \geq 2$, then $P(y) = 0$. Order the remaining projections as before. With this modified order, part (1) of proposition 5.3.5 will hold. Part (2) is modified as follows

2' For $1 \leq j \leq L$, if $s(x_i) = \{F_X(\mu_i)\}_{i=1}^t$, then $A^{(i)}(i, j) = 1$ if and only if $F_X(\mu_j)$ has $s$ edges labeled $I$ whose range is $F_X(\mu_j)$ and $F_X(\mu_i, I) = F_X(\mu_j)$ for every $1 \leq t \leq s$.

Since there is no guarantee now that the first $L$ minimal projections only correspond to $x \in X^+$ with $\#s(x) = 1$, we have to drop the condition that $L + 1 \leq i \leq M$. Part (3) is irrelevant in this case since edge shifts are degree zero AFT's, and will not have this problem.

**Remark 5.3.11:** Because the right Krieger cover is follower separated, we will always have at least one minimal projection $P_i \in A_X$ with the property that $P_i(x) = 1$ if and only if $x \in F_X(\mu_i)$ for some magic word $\mu_i$, and $x \notin F_X(\mu_j)$ for any magic word $\mu_j$ whose follower set is not $F_X(\mu_i)$. The existence of such a projection plays an important role in the next section.

To finish this section, and to motivate the next, we see that the block $A_2$ in theorem 5.3.7 is the zero matrix precisely when $X$ is a degree zero AFT. Using part (1) of proposition 5.3.5, and theorem 5.3.7 we see that $A_1$ is the adjacency matrix for the right (and left) Krieger cover. Because $A_2 = 0$, we must have a gauge invariant ideal $I$, generated by the minimal projections $P_i$, $L + 1 \leq i \leq M$, such that $O_X/I$ is isomorphic to the C*-algebra of the graph of the right Krieger cover. For general AFT's, this is also the case, and we shall explore this in the next section.
5.4. The Structure of $\mathcal{O}_X$ for AFT's

As remarked in section 3.5 the edge shift $\Sigma_A$ associated with the Perron-Frobenius operator may have more symbols than the presentation in the (left) Krieger cover. It could well be that $\Sigma_A$ is not even irreducible, and we will show that when the purely sofic shift $X$ is of Almost Finite Type (AFT), $\Sigma_A$ is always a reducible edge shift.

When $X$ is an AFT, both the left and right Krieger covers are conjugate, and furthermore have the property that any other presentation $\rho : Y \to X$ factors through them (see [6, Theorem 9]). Thus, there is a map $\hat{\rho}$ such that

\[
\begin{array}{c}
\Sigma_L \xrightarrow{\hat{\rho}} Y \\
\downarrow \pi \\
X \xrightarrow{\rho}
\end{array}
\]

commutes. In [6] it is proven that only AFT's have this property. As in [6], we shall refer to this cover as the minimal cover. Furthermore, when the $\rho$ is one to one on an open set [6, Proposition 7, Corollary 10] then $\hat{\rho}$ is a conjugacy.

AFT's were first introduced by B. Markus [17]. They play an important role in the theory of sofic shifts as they are a nice intermediate class between SFT's and the class of all sofic shifts. There are many equivalent definitions for $X$ to be a shift of almost finite type; we will use the following.

**Definition 5.4.1:** A sofic shift $X$ is said to be of almost finite type (AFT) if there exists a cover, $Y$ for $X$ with $\pi : Y \to X$ one to one on an open set.

This definition is much different than the one given in chapter 1. However, it is equivalent (see theorem 5.4.3 and the discussion preceding it).

We will give the definition of an AFT in terms of the labeled graph presentation of $X$. 

Definition 5.4.2: (see [16, Definition 5.1.4]) Let $E = (E^0, E^1, \pi, \Sigma)$ be a labeled graph. Then $(E, \pi)$ is said to be left closing with delay $D$ if $\omega, \lambda$ are paths on $E$ with $|\omega| = |\lambda| > D$, and they end at the same vertex and have the same terminal label, they must have the same terminal edge.

Left closing presentations, $Y$, are “eventually left resolving”. By moving to a higher block presentation of $Y$, one can adjust $\pi$ to be left resolving [16, Section 5.1]. A dual notion, right closing, is defined similarly.

Theorem 5.4.3: (see [6, Proposition 7]) A sofic shift $X$ is an AFT if and only if the minimal right resolving cover (i.e. the right Krieger cover) is left closing (equivalently the minimal left resolving cover is right closing).

We can show for irreducible AFT’s, the Perron-Frobenius cover is always reducible.

Proposition 5.4.4: If $X$ is an irreducible AFT that is not an SFT, then $\Sigma_A$ is reducible.

More important than this is the contrapositive corollary, which tells us when a purely sofic shift is not an AFT.

Corollary 5.4.5: If $X$ is a purely sofic shift with irreducible (as a edge shift) Perron-Frobenius operator $A$, then $X$ is not an AFT.

The proof of Proposition 5.4.4. Let $X$ be an AFT, with $\pi_R : \Sigma_R \to X$ the right Krieger cover. As $\pi_R$ is $n$ to one, for some $n \in \mathbb{N}$, we have by [24, Corollary 3.5], a periodic point $x = \ldots \mu \mu \ldots \in X$ with $\#\pi_R^{-1}(x) = n$. Denote also by $x = \mu \mu \mu \ldots$ the corresponding point in the one-sided shift. We must have $\#\pi_R^{-1}(\mu \mu \ldots) \geq \#\pi_R^{-1}(\ldots \mu \mu \ldots)$. From here on, $x$ will be the point in the one-sided shift.
5.4. The Structure of $O_X$ for AFT's

Because $\#\pi_1^{-1}(x) > 1$, it must be that $\#s(\mu^k) > 1$ for every $k \in \mathbb{N}$. Furthermore, because the periodic point in the two sided shift also has more than one preimage, we can conclude

$$\#(s(\mu^k) \cap r(\mu^k)) > 1$$

for every $k \in \mathbb{N}$. Let $P_i \in A_X$ the the minimal projection satisfying $P_i(x) = 1$, and let $P \in A_X$ be as in remark 5.3.11.

If the Perron-Frobenius cover is irreducible, it must be (proposition 5.2.2) that there exists a magic word $\omega$ with

$$S_\omega^*P_iS_\omega \geq P.$$  

Thus, proposition 3.3.4, and equation (5.5) tell us that for each $y' \in \chi(P_i)$. Let $y = \omega y'$. As $x, y \in \chi(P_i)$, we have

$$(5.7) \quad s(y) = s(x) = s(\mu \ldots).$$

So $s(\omega) = s(y) = s(x)$, and as $\omega$ is magic, $\#r(\omega) = 1$. This allows us to conclude that $\mu \omega \in B(X)$. So we have, for each $k \in \mathbb{N}$,

$$(5.8) \quad \#(s(\mu) \cap r(\mu^k)) > 1.$$  

This allows us to conclude that $\mu^k y \in X^+$ for every $k \in \mathbb{N}$. Because of (5.7) we must have $\#\pi^{-1}(\mu^k y) > 1$ for each $k$. Suppose $\{z^j\}_{j=1}^m = \pi^{-1}(\mu^k y)$. As $X$ is an AFT, the right Krieger cover graph is left closing with degree $D$. Let $k$ be chosen large enough so that $|\mu^k \omega| \gg D$, and let $D' = |\mu^k \omega|$. Because $\#r(\mu^k \omega) = 1$ any $z^i_1 \ldots z^i_{|\mu^k \omega|} \in \pi^{-1}(\mu^k \omega)$ must have the same terminal edge. Thus, each $z^i \in \pi^{-1}(\mu^k y)$
is of the form
\[ z^1 = z_1^1 z_2^1 \ldots z_{D'}^1 z_+^1 \]
\[ z^n = z_1^n z_2^n \ldots z_{D'}^n z_+^n. \]
So from \( D' + 1 \) on, all pre-images of \( \mu^k y \) are the same. This forces us to conclude
\[ \#(r(\mu^k) \cap s(\omega)) = 1 \]
contradicting equation (5.8). Thus, \( \Sigma_A \) must be reducible. \( \Box \)

**Remark 5.4.6**: We shall see later that the converse of proposition 5.4.4 does not hold in general (cf. section 7.5).

There are some interesting consequences to proposition 5.4.4 when combined with the theory of C*-algebras of \( \beta \)-shifts [11]. Essentially, \( \beta \)-shifts can be of finite type, sofic, or neither; it depends on whether the \( \beta \) expansion of 1 terminates, is periodic, or is aperiodic respectively. It has been shown that C*-algebras of \( \beta \)-shifts, are simple [11, Theorem 3.6]. As the Perron-Frobenius operator is reducible for purely sofic AFT’s, it cannot be simple. Therefore we conclude:

**Corollary 5.4.7**: If \( X \) is a purely sofic shift obtained from the \( \beta \)-expansion of 1 (\( \beta > 1 \)), then \( X \) is not an AFT.

We can now state our main structure theorem for AFT’s. The proof is mainly putting together all the pieces of the puzzle developed so far.

**Theorem 5.4.8**: Let \( X \) be an irreducible AFT whose left (and right) Krieger Cover graph satisfies condition (L). Then there exists a maximal ideal \( 0 \neq I \subset \mathcal{O}_X \) such that \( \mathcal{O}_X/I \) is isomorphic to the Cuntz-Krieger algebra of the minimal cover of the sofic shift \( X \).
5.5. The Structure of $\mathcal{O}_X$ for Reducible $X$

Proof. If $X$ is an irreducible AFT, and $A$ its Perron-Frobenius operator, then by proposition 5.4.4 there exists a reducible part of $A$. Using this fact and theorem 5.2.6, there is a non-zero, maximal ideal $I$ with $\mathcal{O}_X/I$ isomorphic to the left Krieger cover graph C*-algebra, $C^*(E_{\tilde{A}})$, and this algebra satisfies condition $(L)$. Since the left Krieger cover is minimal in the sense of [6], the theorem is proved.

Remark 5.4.9: Note that the algebra $\mathcal{O}_X/I$ can be generated independent of the choice of isometries $S_I, I \in \Sigma$. This is because $\mathcal{O}_X/I = C^*(E_{\tilde{A}})$, and $E_{\tilde{A}}$ satisfies condition $(L)$, thus any set of generators for $\mathcal{O}_X$ are unique modulo $I$ by theorem 3.6.1.

5.5. The Structure of $\mathcal{O}_X$ for Reducible $X$

In light of section 5.1, any sofic $X$ has $\mathcal{O}_X$ equal to $C^*(E_A)$, where $E_A$ is the graph of the past set cover for $X$. If a sofic shift is reducible, then certainly its past set cover is reducible. Thus by studying the "irreducible components" of $X$ one obtains theorems about the ideal structure of $X$ similar to those in [7, 2].

Suppose $X$ is a sofic shift with Perron-Frobenius operator $A$. By reducing $\Sigma_A$ as we did in section 5.1, we will clearly have a gauge invariant ideal $I$ such that $\mathcal{O}_X/I$ is the same as $C^*(E_{\tilde{A}})$ and by theorem 5.2.5 $E_{\tilde{A}}$ the left Krieger Cover. By reordering the minimal projections, we can assume the edge shift matrix $\tilde{A}_E$ can be arranged to have the following block structure.

$$\tilde{A} = \begin{bmatrix}
A_1 & * & \cdots & * \\
0 & A_2 & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & * \\
0 & \cdots & \cdots & A_n
\end{bmatrix}$$
5.5. The Structure of $\mathcal{O}_X$ for Reducible $X$

One now can exploit the ideal structure theorems for $\mathcal{A}O_{\tilde{A}_E}$ of [2] regarding this matrix. Specifically, for each $A_i$, $1 < i \leq n$, there is a gauge invariant ideal $I_{A_i}$ such that $\mathcal{O}_X/I_{A_i}$ is isomorphic to $\mathcal{A}O_{\tilde{A}_i}$ where

$$\tilde{A'} = \begin{bmatrix}
A_1 & * & \ldots & * \\
0 & A_2 & * & \ldots & * \\
& \ddots & \ddots & \ddots & \ddots \\
& & 0 & \ddots & \ddots \\
& & & \ddots & 0 & \ldots & * \\
& & & & 0 & \ldots & A_{i-1}
\end{bmatrix}$$
CHAPTER 6

Generating $\mathcal{O}_X$ from Left Resolving Labelings

This chapter covers the converse of chapter 3. That is, if we have a sofic shift $X$, and we label a directed graph $E = (E^0, E^1)$ such that $E$ presents $X$, can we use the generating partial isometries of $C^*(E)$ to make new partial isometries that behave like the generating partial isometries of $\mathcal{O}_X$? Because of the vast possibilities of graph labelings, we restrict ourselves only to left resolving labelings. We will have to make more assumptions as the chapter progresses.

Throughout this chapter, fix a sofic shift $X$ with symbol set $E$. Let $E^0$ be the C*-algebra of $A'$, and $E_a = (E^0, E^1, \pi, \Sigma)$ the Perron-Frobenius cover for $X$. Theorem 3.4.4 tells us that $\mathcal{O}_X = C^*(E_a)$. We will denote by $F = (F^0, F^1, \rho, \Sigma)$ a left-resolving graph that also presents the sofic shift $X$. We remind the reader that we suppress most of the notation, and denote each labeled graph as $(E_A, \pi)$ and $(F, \rho)$ respectively. The label maps $\pi$ and $\rho$ will also denote the corresponding one-block maps $\pi : \Sigma_{E_A} \to X$ and $\rho : Y \to X$ from the respective edge shifts, $\Sigma_{E_A}$ and $Y$, to the sofic shift $X$.

6.1. Left-Resolving Labelings and Graph $C^*$-algebras

As always, for any shift $X$, $X^+$ is the corresponding one-sided shift, and $B(X)$ the set of all allowable words in $X$.

Whenever a labeling of a graph $(F, \rho)$ is left resolving, one can define a set of partial isometries in $C^*(F)$ that behave similarly to the generating partial isometries of $\mathcal{O}_X$. We do so as follows: Suppose that $\{t_e\}_{e \in F^1}$ is a Cuntz-Krieger $F$-family. For
6.1. Left-Resolving Labelings and Graph $C^*$-algebras

Each $I \in \Sigma$ define

$$T_I := \sum_{\{e \in E^*: e \in \rho^{-1}(I)\}} t_e.$$  

A simple argument by induction on $|\mu|$ shows that for $\mu \in B(X)$

$$T_\mu = \sum_{\{\xi \in B(Y): \xi \in \rho^{-1}(\mu)\}} t_\xi.$$  

**Lemma 6.1.1:** Suppose $\xi, \tau \in B(Y)$ and $\xi \neq \tau$, then

1. $t_\xi^*t_\tau = 0$.

2. If in addition $\rho(\xi) = \rho(\tau)$ then $t_\xi^*t_\tau = 0$.

**Proof.** (1) is in the proof of [14, Proposition 4.1]. To prove (2), one also has in the proof of [14, Proposition 4.1] that $t_\xi^*t_\tau \neq 0$ if and only if $r(\xi) = r(\tau)$ (remember that $\xi, \tau$ are paths on $E$). However, as $\rho$ is a left resolving labeling, $r(\xi) = r(\tau)$ forces $\rho(\xi) \neq \rho(\tau)$. □

**Corollary 6.1.2:** If $\mu \in B(X)$ then

$$T_\mu T_\mu^* = \sum_{\xi \in \rho^{-1}(\mu)} t_\xi^*t_\xi.$$  

$$T_\mu^*T_\mu = \sum_{\xi \in \rho^{-1}(\mu)} t_\xi^*t_\xi = \sum_{\{e \in E^*: \xi \in \rho^{-1}(\mu)\}} t_e^*t_e = \sum_{\xi \in \rho^{-1}(\mu): r(\xi) = s(e)} t_e^*t_e = \sum_{\xi \in \rho^{-1}(\mu): r(\xi) = v} \sum_{\{e \in E^*: \xi \in \rho^{-1}(\mu)\}} t_e^*t_e = \sum_{\xi \in \rho^{-1}(\mu): r(\xi) = v} \sum_{\{e \in E^*: \xi \in \rho^{-1}(\mu)\}} t_e^*t_e = \sum_{\xi \in \rho^{-1}(\mu): r(\xi) = v} P_v.$$  

**Proof.** (6.3) and the first equality of (6.4) follow from lemma 6.1.1 and equations (6.1), (6.2). The last part of (6.4) is due to the extension of equation (3.1) as found in [15, Lemma 1.1]. Equation (6.5) is just rewriting the $E$-family relations (see equation (3.1)). □

**Lemma 6.1.3:** If $\mu, \nu \in B(X)$ and $|\mu| = |\nu|$ then $T_\mu^*T_\nu \neq 0$ if and only if $\mu = \nu$.
6.1. Left-Resolving Labelings and Graph $C^*$-algebras

PROOF. By direct calculation and [15, Lemma 1.1].

Proposition 6.1.4: If $X$ is a sofic shift presented by a left resolving labeling of a graph $F$ then for every $n \in \mathbb{N}$, and $\mu \in B(X)$

\[
\sum_{|\mu|=n} T_\mu T_\mu^* = 1.
\]

PROOF.

\[
\sum_{|\mu|=n} T_\mu T_\mu^* = \sum_{|\mu|=n} \left( \sum_{\xi \in \rho^{-1}(\mu)} t_\xi t_\xi^* \right) \quad \text{equation (6.3)}
\]

\[
= \sum_{|\xi|=n} t_\xi t_\xi^* \quad \text{as } \rho \text{ is onto}
\]

\[
= 1
\]

the last equality follows because $t_\xi t_\xi^*$ is precisely the characteristic function of the cylinder set of $\xi$, and these form a partition of the compact topological space $Y^+$. □

Theorem 6.1.5: If $X$ is a sofic shift presented by a left resolving labeling of a graph $E$ with symbol set $\Sigma = \{1, \ldots, N\}$ then

1. $\sum_{l=1}^{N} T_l T_l^* = 1$,
2. $T_\mu^* T_\mu T_\nu = T_\nu T_\mu^* T_\mu$, where $\mu, \nu \in B(X)$.

Hence the generators $T_l$ satisfy the same relations as the generators $S_l$ for $O_X$. 

6.2. More on the Left Krieger Cover Algebra

Proof. The first identity is a special case of proposition 6.1.4. We need to show the second identity.

\[ T_{\mu}^* T_{\mu} T_{\nu} = \sum_{\alpha \in B(\mathcal{X}) \atop |\alpha| = |\nu|} T_{\alpha} T_{\mu}^* T_{\mu} T_{\nu} \quad \text{proposition 6.1.4} \]

\[ = \sum_{\alpha \in B(\mathcal{X}) \atop |\alpha| = |\nu|} T_{\alpha} T_{\mu}^* T_{\mu} T_{\nu} \quad \text{equation (6.2)} \]

\[ = T_{\nu} T_{\mu}^* T_{\mu} T_{\nu} \quad \text{lemma 6.1.3}. \]

We shall denote by \( \mathcal{L}_\mathcal{X} \) the C*-subalgebra generated by the isometries \( T_I \) with \( I \in \Sigma \).

6.2. More on the Left Krieger Cover Algebra

In light of theorem 6.1.5 two questions come into mind. First, we know that \( \mathcal{O}_\mathcal{X} = C^*(E_\mathcal{A}) \). Thus, we can ask if the construction done in the previous section on \( C^*(E_\mathcal{A}) \) give us the original isometries \( S_I \) obtained in chapter 3. Second, we can ask for the general case when the map \( S_I \mapsto T_I \) is an isomorphism.

Our first proposition answers the first question.

**Proposition 6.2.1:** Suppose \( \mathcal{O}_\mathcal{X} = C^*(E_\mathcal{A}) \) and \( E_\mathcal{A} \) is the Perron-Frobenius cover for \( \mathcal{X} \). Let \( \{S_I\}_{I \in \Sigma} \) generate \( \mathcal{O}_\mathcal{X} \). Then the construction done in section 6.1 gives \( T_I = S_I \).

**Proof.** Let \( \pi : E_\mathcal{A}^1 \to \Sigma \) be the labeling map of the left Krieger Cover, \( \{P_i\}_{i=1}^L \) a complete set of minimal projections for \( A_\mathcal{X} \), and \( A = \sum A^{(I)} \) the Perron-Frobenius
operator, then

\[ T_I = \sum_{e \in \pi^{-1}(I)} t_e \]

\[ = \sum_{e = a_{i,j}} t_e \quad \text{Section 3.5} \]

\[ = \sum_{A(I)(i,j) \neq 0} P_i S_I P_j \]

\[ = \sum_{i,j=1}^L P_i S_I P_j \quad \text{by Corollary 3.4.2} \]

\[ = S_I. \]

Thus \( \mathcal{L}_X = \mathcal{O}_X = C^*(E_A). \)

The following lemma's proof is straightforward.

**Lemma 6.2.2:** Let \( F = (F^0, F^1) \) be a graph with left resolving labeling \( \rho : F^1 \rightarrow \Sigma \).

Let \( X \) be the sofic shift generated by this labeling. Then for each \( z \in \mathbb{T} \) the gauge action \( \beta_z \) on \( C^*(F) \) is inherited by \( \mathcal{L}_X \) and satisfies:

\[ \beta_z(T_I) = z T_I \text{ and } \beta_z(T^*_\mu T^*_\mu) = T^*_\mu T^*_\mu. \]

### 6.3. The \( \mathcal{O}_X \) to \( \mathcal{L}_X \) Isomorphism

In light of lemma 6.2.2 and theorem 6.1.5, to satisfy the hypotheses of theorem 2.4.6, all it seems that we need is a well defined \(*\)-isomorphism between \( A_X = C^*(\{S^*_\mu S_\mu : \mu \in B(X)\}) \) and \( B_X = C^*(\{T^*_\mu T_\mu : \mu \in B(X)\}) \) that sends \( S^*_\mu S_\mu \) to \( T^*_\mu T_\mu \). In general, this could be difficult to guarantee due to many factors; one being that \( E_A \) is not always an irreducible graph, even if \( X \) an irreducible sofic shift. A reasonable remedy is to ask for the following condition.
Definition 6.3.1: A left resolving labeling of a graph \((F, \rho)\) has the factor property for \(\Sigma_{E_A}\) if and only if there exists an epimorphism (factor map) \(\bar{\rho}: Y \rightarrow \Sigma_{E_A}\) such that

1. The following diagram commutes

\[
\begin{array}{ccc}
\Sigma_{E_A} & \xrightarrow{\bar{\rho}} & Y \\
\downarrow{\pi} & & \downarrow{\rho} \\
X & \xrightarrow{\mu} & \\
\end{array}
\]

2. \(\bar{\rho}\) is a one-block map.

We shall see when \((F, \rho)\) has the factor property for \(\Sigma_{E_A}\), we have the following theorem:

Theorem 6.3.2: Let \(X\) is a sofic shift with Perron-Frobenius cover \(\Sigma_{E_A}\). Suppose further that \((F, \rho)\) is a left resolving labeling of an irreducible graph \(F\) with the factor property for \(\Sigma_{E_A}\), and \(\{S_i\}_{i \in \Sigma}\) generates \(O_X\) and \(\{T_i\}_{i \in \Sigma}\) generates \(L_X\). Then \(O_X \cong L_X\) through the map that sends \(S_i\) to \(T_i\).

To prove theorem 6.3.2 we must show that the map \(\theta: A_X \rightarrow B_X: S_{\mu}^*S_\mu \rightarrow T_{\mu}^*T_\mu\) is a well defined \(*\)-isomorphism. To do this, we shall see that both \(S_{\mu}^*S_\mu\) and \(T_{\mu}^*T_\mu\) can be regarded as elements of \(C(Y^+)\), the space of continuous functions of \(Y^+\). Ultimately, we shall show that as functions on this space \(S_{\mu}^*S_\mu\) and \(T_{\mu}^*T_\mu\) are equal. The factor property of \((F, \rho)\) is crucial for constructing such an isomorphism.

Denote by \(\Sigma_{E_A}\) the edge shift generated by the Perron-Frobenius cover \(E_A\); \(Y\) the edge shift generated by the graph \(F\). Let \(X\) be the sofic shift presented by these
two graphs. As we know from corollary 6.1.2:

\[
S^*_\mu S_\mu = \sum_{\xi \in \pi^{-1}(\mu) \atop r(\xi) = s(f)} s_f s_f^*
\]

(6.7)

\[
T^*_\mu T_\mu = \sum_{\xi \in \rho^{-1}(\mu) \atop r(\xi) = s(e)} t_e t_e^*
\]

By [8, Proposition 2.5], the C*-algebra generated by \( t_\xi t_\xi^* \), \( \zeta \in B(Y) \) is isomorphic to \( C(Y^+) \), the continuous functions on the one sided space \( Y^+ \). Similarly the C*-algebra generated by \( s_\xi s_\xi^* \), \( \xi \in B(\Sigma_{E_A}) \) is isomorphic to \( C(\Sigma_{E_A}^+) \). Equations (6.7) allow us to identify \( S^*_\mu S_\mu \in C(\Sigma_{E_A}^+) \), and \( T^*_\mu T_\mu \in C(Y^+) \). Clearly

\[
S^*_\mu S_\mu(z) = \begin{cases} 1 & \text{if there exists } \xi \in \pi^{-1}(\mu), s(z) = r(\xi) \\ 0 & \text{otherwise,} \end{cases}
\]

(6.8)

for \( z \in \Sigma_{E_A}^+ \). Similarly for \( y \in Y^+ \)

\[
T^*_\mu T_\mu(y) = \begin{cases} 1 & \text{if there exists } \zeta \in \rho^{-1}(\mu), s(y) = r(\zeta) \\ 0 & \text{otherwise.} \end{cases}
\]

(6.9)

Remember, that \( z \) and \( y \) are walks on different graphs, so as similar as equations (6.8) and (6.9) look, they are very different. However we can use the factor property to rectify this.

Since both \( Y \) and \( \Sigma_{E_A} \) are left resolving presentations of \( X \), and \((F, \rho)\) has the factor property, the corresponding one sided shifts also must satisfy

\[
\Sigma_{E_A}^+ \xrightarrow{\bar{\rho}} Y^+ \\
\pi \downarrow \rho \\
X^+ 
\]
6.3. The $\mathcal{O}_X$ to $\mathcal{L}_X$ Isomorphism

So $\tilde{\rho}$, when restricted to the one sided shifts, is also onto (see for example [16, Page 461]). Since $Y^+$ is a compact, Hausdorff space, $\tilde{\rho}$ induces an injection

$$\tilde{\rho}^* : C(\Sigma^+_\mu) \to C(Y^+).$$

Defined as $\tilde{\rho}^*(S\mu S\mu)(y) = (S\mu S\mu \circ \tilde{\rho})(y)$. This gives the following lemma.

**Lemma 6.3.3:** Each non-zero element $S\mu S\mu \in A_X$ can be regarded as a non-zero function $(\tilde{\rho}^*(S\mu S\mu))$ in $C(Y^+)$ as follows:

$$\tilde{\rho}^*(S\mu S\mu)(y) = \begin{cases} 1 & \text{if there exists } \xi \in \pi^{-1}(\mu), \ s(\tilde{\rho}(y)) = r(\xi) \\ 0 & \text{otherwise} \end{cases}$$

for each $y \in Y^+$. In light of this, all we need to show is that as functions on $C(Y^+)$, $\tilde{\rho}^*(S\mu S\mu) = T\mu T\mu$.

**Lemma 6.3.4:** $\tilde{\rho}^*(S\mu S\mu) = T\mu T\mu$ when regarded as continuous functions on $Y^+$. 

**Proof.**

$$T\mu T\mu(y) = 1 \iff \text{there exists } \zeta, \rho(\zeta) = \mu, \text{ and } s(y) = r(\zeta)$$

$$\iff \text{there exists } \zeta, \pi \circ \tilde{\rho}(\zeta) = \mu, \text{ and } s(y) = r(\zeta).$$

Let $\xi = \bar{\rho}(\zeta)$. Then $\pi(\xi) = \mu$ and $s(\tilde{\rho}(y)) = r(\xi)$. Thus $\tilde{\rho}^*(S\mu S\mu)(y) = 1$.

Now suppose

$$T\mu T\mu(y) = 0 \iff \text{for all } \zeta \in \rho^{-1}(\mu), s(y) \neq r(\zeta)$$

$$\iff \text{for all } \zeta \in (\tilde{\rho}^{-1} \circ \pi^{-1})(\mu), s(y) \neq r(\zeta).$$

As $\tilde{\rho}$ and $\pi$ are onto, it must be that for every $\xi \in \pi^{-1}(\mu)$, $s(\tilde{\rho}(y)) \neq r(\xi)$. Which means that $\tilde{\rho}^*(S\mu S\mu)(y) = 0$. \qed
6.4. The Factor Property and the Left Krieger Cover

Because of lemma 6.3.4, we can define $\theta : A_X \to B_X$ as $\theta(S^*_\mu S_\mu) = T^*_\mu T_\mu$; it is a *-isomorphism, and all the hypotheses of theorem 2.4.6 are satisfied. Thus $O_X \cong L_X$ via the map that sends $S_i$ to $T_i$, and theorem 6.3.2 is proved.

Remark 6.3.5: In the proof of lemma 6.3.4, the fact that $\rho$ is a one-block map has been explicitly used since it is essential for $\rho(\mu)$ to be well defined for any word (block) of arbitrary length. And this subtle point is an essential ingredient for the proof.

6.4. The Factor Property and the Left Krieger Cover

There are cases (see, for example, section 7.4) when one is fortunate enough for $O_X = C^*(E_A)$ and $E_A$ is also the left Krieger cover for $X$. If in addition $X$ is irreducible, one can appeal to the theory of the left Krieger cover to show that any irreducible left resolving graph presentation of $X$ will have the factor property for the left Krieger cover.

Lemma 6.4.1: If $X$ is an irreducible sofic shift with left Krieger cover $\Sigma_L$, then any irreducible, left resolving presentation of $X$ ($\rho : Y \to X$) has the factor property for the left Krieger cover.

Proof. The existence of a factor map $\tilde{\rho} : Y \to \Sigma_L$ follows from, for example [6, Proposition 4]. The proof of [6, Proposition 4] shows that the $\tilde{\rho}$ is an onto, one-block map. □

Because of this, we get a special case of theorem 6.3.2.

Theorem 6.4.2: Suppose that $X$ is an irreducible sofic shift and $O_X = C^*(E_A)$ with $E_A$ the left Krieger cover graph of $X$. Let $(F, \rho)$ be any irreducible, left resolving presentation of $X$, and let $L_X \subseteq C^*(F)$ be as before. Then $O_X \cong L_X$ through the map that sends $S_i$ to $T_i$.
6.5. The Follower Set and the Range Map

In many cases, $\mathcal{O}_X$ is not equal to the C*-algebra of its left Krieger cover, but there exists a gauge invariant ideal $I$ with $\mathcal{O}_X/I$ isomorphic to the C*-algebra of the left Krieger cover graph (theorem 5.2.5). If $X$ is an irreducible sofic shift, theorem 6.4.2 will still hold if one replaces the $\mathcal{O}_X$ in the statement with $\mathcal{O}_X/I$. One can see this as follows. If we denote by $\tilde{S}_\mu$, $\mu \in B(X)$ as the image of $S_\mu$ in $\mathcal{O}_X/I$, then clearly $\{\tilde{S}_\mu\}_{\mu \in B(X)}$ generates $\mathcal{O}_X/I$. The relations $S_\mu$ has in $\mathcal{O}_X$ will carry over to $\mathcal{O}_X/I$, and because $I$ is gauge invariant, the gauge action can be used on $\mathcal{O}_X/I$.

The main difference between $\mathcal{O}_X$ and $\mathcal{O}_X/I$ is that the image of $A_X$ in the quotient has been reduced by a few minimal projections, reducing its dimension. However, one can check that theorem 2.4.6 will hold with $\mathcal{O}_X/I$ and $A_X/(I \cap A_X)$ in place of $\mathcal{O}_X$ and $A_X$, and $\tilde{S}_\mu$ in place of $S_\mu$. By modifying the results regarding $\mathcal{O}_X$ in the first part of this chapter with $\mathcal{O}_X/I$ in place of $\mathcal{O}_X$, one would obtain theorem 6.4.2 for $\mathcal{O}_X/I$. We leave these routine verifications as an exercise.

6.5. The Follower Set and the Range Map

Suppose that $\mathcal{O}_X = C^*(E_A)$, and $E_A$ is the left Krieger cover. As mentioned in lemma 2.1.1, the projection $S_\mu^*S_\mu \in A_X$ can be identified with

$$\{x \in X^+ : x.\mu x \in X^+\}.$$

Thus using lemma 1.9.2 $S_\mu^*S_\mu = S_\nu^*S_\nu$ precisely when $F_X(\mu) = F_X(\nu)$.

This allows us to note the following special property in $A_X$ and the graph $E_A$.

**Proposition 6.5.1:** If $\mathcal{O}_X = C^*(E_A)$, and $E_A$ is the left Krieger cover of $X$ then the following are equivalent, for $\mu, \nu \in B(X)$.

1. $S_\mu^*S_\mu = S_\nu^*S_\nu$,
2. $F_X(\mu) = F_X(\nu)$,
3. $r(\mu) = r(\nu)$ on the labeled graph $(E_A, \pi)$. 

6.5. The Follower Set and the Range Map

Proof. (1) \iff (2) was proved in the discussion preceding the proposition. To show (1) \Rightarrow (3): If (1) holds, both \( S^*_\mu S_\mu \) and \( S^*_\nu S_\nu \) must be the sum of the same minimal projections, and since the minimal projections in \( A_X \) coincide with the vertices in the left Krieger cover, the result follows (equation (6.5)). (3) \Rightarrow (2) follows because if the \( r(\mu) = r(\nu) \), then any \( x \in X^+ \) with \( s(x) \in r(\mu) = r(\nu) \) means both \( \mu x \) and \( \nu x \in X^+ \). Since the left Krieger cover is onto, the result follows.

If one decides not to use the left Krieger cover \( E_A \) for \( X \), does proposition 6.5.1 still hold for arbitrary irreducible left resolving labelings, with \( T^*_\mu T_\mu \) in place of \( S^*_\mu S_\mu \)? The equivalence of (1) and (2) is just equation (6.5). To show (2) \Rightarrow (3), just note that if \( r(\mu) = r(\nu) \) then as \( E \) presents \( X \), their follower sets must be equal. Proving (3) \Rightarrow (2), or (3) \Rightarrow (1) is difficult to do directly from graph theory (it can be done with state splittings and left-synchronizing words), but the algebraic machinery developed in this chapter gives us a simple answer.

To show (3) \Rightarrow (1), we see that if \( F_X(\mu) = F_X(\nu) \), then \( S^*_\mu S_\mu = S^*_\nu S_\nu \); use lemma 6.3.4. Thus we also have:

\[ \text{Proposition 6.5.2: Suppose } E = (E^0, E^1) \text{ is an irreducible graph with left resolving label map } \rho : E^1 \to \Sigma. \text{ Then the following conditions are equivalent:} \]

1. \( T^*_\mu T_\mu = T^*_\nu T_\nu \).
2. \( r(\mu) = r(\nu) \) in \((E, \rho)\).
3. \( F_X(\mu) = F_X(\nu) \).

Proposition 6.5.2 tells us there is no way to label an irreducible graph in a left resolving manner such that the follower sets of two words \( \mu, \nu \) are equal, but \( r(\mu) \) does not equal \( r(\nu) \).

Figure 6.5.1 shows a left resolving presentation of the even shift (example 1.2.3). Note that the graph \( E \) is irreducible. Thus the \( \mathcal{L}_X \) generated by the labeling is
6.5. The Follower Set and the Range Map

Figure 6.5.1. A left resolving presentation of the even shift.

isomorphic to $\mathcal{O}_X/I$, where $I$ is maximal and gauge invariant. However, $\mathcal{L}_X$ does not generate $C^*(E)$. One can see this because $P_1 = T_1^*T_1 - T_1^*T_1T_2T_1$ is a minimal projection in $B_X$ (as $S_1^*S_1 - S_1^*S_1S_2^*S_2$ is a minimal projection in $A_X$), and $P_1 = P_{v_1} + P_{v_2}$. In spite of this, it does happen to be the case that $C^*(E)$ is stably isomorphic to $\mathcal{O}_X$ because $E$ was obtained via an out-splitting of the vertex $P_X(1)$ in the left Krieger Cover, and thus as (two-sided) edge shift spaces, they are conjugate (see [16, Chapter 2] for more on state splittings).

Remark 6.5.3: For reducible sofic shifts, uniqueness of the left Krieger cover fails. A counter-example, due to N. Jonoska, can be found in [16, Example 3.3.21]. This example is for right resolving presentations, but also holds for left resolving by duality. Thus, there is no guarantee that any left resolving presentation of a reducible sofic shift will factor through the left Krieger cover. So although one could construct an $\mathcal{L}_X$ for any left resolving presentation of a reducible sofic shift $X$, the techniques used in this chapter could not be carried over to find an isomorphism between $\mathcal{L}_X$ and $\mathcal{O}_X$. 
CHAPTER 7

Examples of $\mathcal{O}_X$ for Sofic $X$

In this chapter, we present some examples that demonstrate the results from previous chapters. We focus first on the AFT's presented in chapter 1, and then give an example of a non-AFT where the past set cover and left Krieger cover are the same. In the last section, we show a counter example to the converse of proposition 5.4.4 as mentioned in remark 5.4.6.

We remind the reader that when a Perron-Frobenius operator is presented as a matrix in these examples, its transpose is used as a map on K-theory. This was done to make the K-theory formulae consistent with the Cuntz-Krieger algebras, and furthermore, it allows us to view the matrix as the vertex matrix of the past cover. I.e., there are $n$ edges from vertex $i$ to vertex $j$ if and only if the $(i,j)$th entry of the matrix equals $n$.

7.1. The Even shift

We let $X$ be the even shift (a degree zero AFT—see chapter 1) on two symbols defined in example 1.2.3. The follower set graph, and the right Krieger cover were shown in figures 1.6.1 and 1.6.2 respectively. The follower sets are shown below.

\[
C_2 = F_X(2) = X^+ \\
C_1 = F_X(1) = \{2_{\text{even}}1-, 22222\ldots\} \\
C_{12} = F_X(12) = \{2_{\text{odd}}1-, 22222\ldots\}
\]
7.1. The Even shift

Here $2_{\text{even}}1^-$ denotes a word with an even number of 2's, then a 1, followed by anything legal; $2_{\text{odd}}1^-$ is defined similarly.

We now look at Matsumoto's construction done at the end of [18, Section 8]. He shows that:

$$S_\mu S_\mu = \begin{cases} \\ 1 & \text{if } \mu = (2 \ldots 2), \\ S_1^* S_1 & \text{if } \mu = (* \ldots * 12_{\text{even}}), \\ S_2^* S_1^* S_1 S_2 & \text{if } \mu = (* \ldots * 12_{\text{odd}}) \end{cases}$$

Here $2_{\text{even}}$ denotes an even block of 2's (zero is even), and $2_{\text{odd}}$ an odd number of two's.

To understand exactly how $A_X$ looks takes a bit more work. We have to make the following modifications. To find the follower set equivalence classes we note we have two distinct magic words $\mu_1 = 1, \mu_2 = 12$, and they have a non trivial intersection. Thus we get.

$$P(\mu_1) = S_1^* S_1 - P(\mu_1, \mu_2)$$
$$P(\mu_2) = S_2^* S_1^* S_1 S_2 - P(\mu_1, \mu_2)$$
$$P(\mu_1, \mu_2) = S_1^* S_1 \cdot S_2^* S_1^* S_1 S_2$$

Using the following order (which is the order explained in section 5.3), we define:

$$P_1 = P(\mu_1) \quad P_2 = P(\mu_2) \quad P_3 = P(\mu_1, \mu_2)$$

then $P_1 + P_2 + P_3 = 1$ and $A_X = \mathbb{C}P_1 \oplus \mathbb{C}P_2 \oplus \mathbb{C}P_3$ (Note that this reverses $P_2$ and $P_3$ from [18]).

The key to finding out what the Perron-Frobenius operator will be as a matrix is to find out how the following map works:

$$a \mapsto \sum_{i=1}^{n} S_i^* a S_i.$$
7.1. The Even shift

So we have to see what this map does on our three projections. We will show the calculation for one projection. We will see what ‘trick’ has to be employed.

We calculate $S_1^*P_1S_1$. Note first that

$$S_1^*P(\mu_1)S_1 = S_1^*S_1^*S_1S_1 - S_1^*P(\mu_1, \mu_2)S_1$$

$$= S_1^*S_1 - 0$$

$$= [S_1^*S_1 - P(\mu_1, \mu_2)] + P(\mu_1, \mu_2)$$

$$= P(\mu_1) + P(\mu_1, \mu_2)$$

Thus, (7.3) gives us

$$S_1^*P_1S_1 = P_1 + P_3.$$  

We can do a similar calculation for $S_1^*P_2S_1$ and see it equals 0. We also have $S_1^*P_3S_1 = 0$. Thus we see that

$$A^{(1)} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Now we do the same thing for $S_2^*P_kS_2, \ 1 \leq k \leq 3$ and get the following:

$$S_2^*P_1S_2 = P_2$$

$$S_2^*P_2S_2 = P_1$$

$$S_2^*P_3S_2 = P_3$$

From (7.5) we see that

$$A^{(2)} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
7.1. The Even shift

The Perron-Frobenius operator as a matrix is defined as

\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

adding (7.4) and (7.6), we get

\[ \sum_{l=1}^{2} A^{(l)} \]

We know by proposition 5.1.2 \( A \) is the adjacency matrix for the past set presentation (this can be verified directly). Note the top 2 \( \times \) 2 left corner is the adjacency matrix for the left Krieger cover shown in figure 1.6.2. The algebra \( O_{X} \) is not simple in this case, and the gauge invariant ideal generated by \( P_{3} \) can be modded out leaving us with just the top 2 \( \times \) 2 corner.

The matrix \( A \) does not satisfy condition (I) of [8]. We can see this also because the projection \( P_{3}(x) \neq 0 \) if and only if \( x = 22222 \ldots \). By modifying the even shift as in figure 7.1.1, we would have then that \( P_{3} \) corresponded to non-periodic points (made up of combinations of 2's and 3's), and the Perron-Frobenius operator will satisfy condition (I). Although still non-simple (it is still an AFT), it is purely infinite.
The previous section shows a simple case. Here we present an AFT where the calculations get foul, so most will be skipped. The DC3-shift is explained in example 1.3.3, and its Krieger Cover was shown in Figure 1.6.3. The complete set of magic words for this shift are:

\[
\begin{align*}
\mu_1 &= -1 - 1 - 1 \\
\mu_2 &= -1 - 1 + 1 \\
\mu_3 &= +1 + 1 + 1 - 1 \\
\mu_4 &= +1 + 1 + 1
\end{align*}
\]

If we were going to do this like the calculations of the previous section, we would start at the bottom, and work up. We define:

\[
P(\mu_1, \mu_2, \mu_3, \mu_4) = \prod_{i=1}^{4} S_{\mu_i}^* S_{\mu_i} = 0
\]

Hence we can ignore it. The next non-trivial projections are:

\[
\begin{align*}
P(\mu_1, \mu_2, \mu_3) &= \prod_{i=1}^{3} S_{\mu_i}^* S_{\mu_i} \\
P(\mu_2, \mu_3, \mu_4) &= \prod_{i=2}^{4} S_{\mu_i}^* S_{\mu_i}
\end{align*}
\]

(7.8)

Note that we have to subtract \(P(\mu_1, \ldots, \mu_4)\) from the equations in (7.8) but since it is trivial, we can ignore it.

Now we define the 2-way projections as follows

\[
\begin{align*}
P(\mu_1, \mu_2) &= S_{\mu_1}^* S_{\mu_1} S_{\mu_2}^* S_{\mu_2} - P(\mu_1, \mu_2, \mu_3) \\
P(\mu_1, \mu_3) &= S_{\mu_1}^* S_{\mu_1} S_{\mu_3}^* S_{\mu_3} - P(\mu_1, \mu_2, \mu_3) = 0!! \\
P(\mu_2, \mu_3) &= S_{\mu_2}^* S_{\mu_2} S_{\mu_3}^* S_{\mu_3} - P(\mu_1, \mu_2, \mu_3) - P(\mu_2, \mu_3, \mu_4) \\
P(\mu_2, \mu_4) &= S_{\mu_2}^* S_{\mu_2} S_{\mu_4}^* S_{\mu_4} - P(\mu_2, \mu_3, \mu_4) = 0!! \\
P(\mu_3, \mu_4) &= S_{\mu_3}^* S_{\mu_3} S_{\mu_4}^* S_{\mu_4} - P(\mu_2, \mu_3, \mu_4)
\end{align*}
\]

(7.9)
Two of these are zero because \( F_X(\mu_1) \cap F_X(\mu_3) \) is actually equal to the three way intersection \( F_X(\mu_1) \cap F_X(\mu_2) \cap F_X(\mu_3) \), and similarly for the other one. However, if we use the follower set equivalence relation of chapter 5 we see that 
\[
s(+1-1+1-1\ldots) = \{F_X(\mu_i)\}_{i=1}^3 \text{ and } s(-1+1-1+1\ldots) = \{F_X(\mu_i)\}_{i=2}^4.
\]
Thus, using the values of \( s(x) \) will get the largest collection of follower sets of which \( x \) is in the intersection.

Finally, we get the projections for the follower sets. We have

\[
P(\mu_1) = S_{\mu_1}^* S_{\mu_1} - P(\mu_1, \mu_2) - P(\mu_1, \mu_2, \mu_3)
\]
\[
P(\mu_2) = S_{\mu_2}^* S_{\mu_2} - P(\mu_1, \mu_2) - P(\mu_2, \mu_3) - P(\mu_1, \mu_2, \mu_3, \mu_4)
\]
\[
P(\mu_3) = S_{\mu_3}^* S_{\mu_3} - P(\mu_2, \mu_3) - P(\mu_3, \mu_4) - P(\mu_1, \mu_2, \mu_3, \mu_4)
\]
\[
P(\mu_4) = S_{\mu_4}^* S_{\mu_4} - P(\mu_3, \mu_4) - P(\mu_2, \mu_3, \mu_4)
\]

That’s them all!! Nine orthogonal projections (when one discounts the two that came up trivial). To do the calculation of the Perron-Frobenius operator, one also would start from the bottom up. We will do it for the +1, symbol. The -1 symbol is similar.
7.2. The Degree 3 Charge Constrained Shift

Let's first do the calculation for (7.8). We have

\[(7.11) \quad S_{+1}^* P(\mu_1, \mu_2, \mu_3) S_{+1} = \prod_{i=1}^{3} S_{+1}^* S_{\mu_i} S_{\mu_i} S_{+1}\]

\[(7.12) \quad = \prod_{i=2}^{4} S_{\mu_i}^* S_{\mu_i}\]

\[(7.13) \quad = P(\mu_2, \mu_3, \mu_4)\]

\[(7.14) \quad S_{+1}^* P(\mu_2, \mu_3, \mu_4) S_{+1} = \prod_{i=2}^{4} S_{+1}^* S_{\mu_i} S_{\mu_i} S_{+1}\]

\[(7.15) \quad = 0\]

Next we do the calculations for (7.9). We will do one in detail, the others are similar. We make use of equations (7.13), (7.15).

\[(7.16) \quad S_{+1}^* P(\mu_1, \mu_2) S_{+1} = S_{\mu_2}^* S_{\mu_2} S_{\mu_3} S_{+1} - S_{+1}^* P(\mu_1, \mu_2, \mu_3) S_{+1}\]

\[(7.17) \quad = S_{\mu_2}^* S_{\mu_2} S_{\mu_3} S_{+1} + P(\mu_2, \mu_3, \mu_4) - P(\mu_1, \mu_2, \mu_3) + P(\mu_1, \mu_2, \mu_3)\]

\[(7.18) \quad = P(\mu_2, \mu_3) + P(\mu_2, \mu_3, \mu_4)\]

\[(7.19) \quad S_{+1}^* P(\mu_2, \mu_3) S_{+1} = P(\mu_3, \mu_4)\]

\[(7.20) \quad S_{+1}^* P(\mu_3, \mu_4) S_{+1} = 0\]

Note that for (7.18) we had to employ a similar trick as in (7.3); we had to add then subtract appropriate projections (in this case \(P(\mu_1, \mu_2, \mu_3)\)), in order to get the equality in terms of other projections.
7.2. The Degree 3 Charge Constrained Shift

Now we will do the calculations for (7.10). They are similar to the above, so we won't do them in detail. We rely on the calculations from (7.13) to (7.20).

\[(7.21) \quad S_{+1}^* P(\mu_1) S_{+1} = P(\mu_2) + P(\mu_1, \mu_2) + P(\mu_1, \mu_2, \mu_3)\]

\[(7.22) \quad S_{+1}^* P(\mu_2) S_{+1} = P(\mu_3) + P(\mu_1, \mu_2, \mu_3)\]

\[(7.23) \quad S_{+1}^* P(\mu_3) S_{+1} = P(\mu_4)\]

\[(7.24) \quad S_{+1}^* P(\mu_4) S_{+1} = 0\]

Now with the following order

\[P_1 = P(\mu_1) \quad P_2 = P(\mu_2) \quad P_3 = P(\mu_3) \quad P_4 = P(\mu_4)\]

\[P_5 = P(\mu_1, \mu_2) \quad P_6 = P(\mu_2, \mu_3) \quad P_7 = P(\mu_3, \mu_4)\]

\[P_8 = P(\mu_1, \mu_2, \mu_3) \quad P_9 = P(\mu_2, \mu_3, \mu_4),\]

and calculations (7.13) to (7.24), one gets that \(A^{(i+1)}\) is the following 9 \(\times\) 9 matrix:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & \ldots \ldots \\
0 & \ldots \ldots & 1 & 0 & 1 & 0 \\
0 & \ldots \ldots & 1 & 0 & 1 & 0 \\
0 & \ldots \ldots & 0 & 1 & 0 & 0 \\
0 & \ldots \ldots & 0 & 1 & 0 & 0 \\
0 & \ldots \ldots & 1 & 0 & \ldots \ldots \\
0 & \ldots \ldots & 1 & 0 \\
0 & \ldots \ldots & 1 & 0 & 0 & 0
\end{bmatrix}
\]
7.2. The Degree 3 Charge Constrained Shift

One could do a similar calculation for $A^{(-1)}$ to get:

$$A^{(-1)} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

Thus the Perron-Frobenius operator for the DC3-free shift is

$$A = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

Once again, the top $4 \times 4$ left corner is the adjacency matrix for the Krieger cover; as the bottom right $2 \times 2$ matrix is a permutation matrix, with zeroes on its left, $A$ does not satisfy condition (I). However, the top $4 \times 4$ corner does, and when you mod out by the maximal ideal $I$ (generated by projections $P_5$ to $P_9$), you get a purely infinite, simple C*-algebra clearly isomorphic to the right Krieger cover graph C*-algebra of figure 1.6.3. It can be checked that the Bratteli diagram for the
AF-algebra $\mathcal{F}_X/(I \cap \mathcal{F}_X)$ shows that the algebra $\mathcal{F}_X/(I \cap \mathcal{F}_X)$ is non-simple, but $O/X$ is, and is also purely infinite by theorems 3.2.4, 3.4.4, and 4.2.3.

### 7.3. The AFT of Figure 1.5.2

Our final AFT example is the sofic shift presented in figure 1.5.2. Although the graph is not left resolving, it is left closing (any word of length 2 or more that ends at the same vertex and has the same label has the same terminal edge). If $a = F_X(12)$, $b = F_X(01)$ and $c = F_X(0)$. One can check for each $x \in X^+$, $s(x)$ is one of the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}$. Thus we have the following minimal projections:

\[
\begin{align*}
P_1 &= P(a) & P_2 &= P(b) & P_3 &= P(c) \\
P_4 &= P(\{a, b\}) & P_5 &= P(\{a, c\}) & P_6 &= P(\{a, b, c\}).
\end{align*}
\]

In this case, the intersection of follower sets $b$ and $c$ is the same as the intersection of $a, b,$ and $c$.

One can check that for each symbol, the Perron-Frobenius operator is

\[
A^{(0)} = \begin{bmatrix}
0 & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix}.
\]
7.3. The AFT of Figure 1.5.2

Figure 7.3.1. The Perron-Frobenius presentation of a degree 2 AFT

\[ A^{(1)} = \begin{bmatrix}
0 & \ldots & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & \ldots & 0 \\
0 & \ldots & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}, \]

\[ A^{(2)} = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & \ldots & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & \ldots & 0 \\
0 & \ldots & 0 \\
\end{bmatrix}, \]

and the Perron-Frobenius operator is obtained by summing the above three matrices.

As a labeled graph it looks like figure 7.3.1.

Because it is an AFT, it has a reducible part. By removing vertex 6 and all edges entering and leaving it, we are left with an irreducible graph. As a matrix, \( A \) will not satisfy condition (I), but once vertex 6 is removed, condition (I) is trivially satisfied.
Figure 7.4.1 is the past set presentation of $X$, and with vertex 6 removed, is the left Krieger cover (propositions 5.1.2, and 5.2.2). Note how much different it looks from the right Krieger Cover (figure 1.5.2). However, the underlying edge shifts (obtained by ignoring the labels on the vertices) of figure 1.5.2 and the irreducible part of 7.3.1 are conjugate as shift spaces.

One other way of noticing that $X$ has a reducible part is to note that $P_6$ only corresponds to the periodic point 111... Hence, the Perron-Frobenius operator cannot satisfy condition (I).

7.4. A Non-AFT

Consider the sofic shift $X$ presented by figure 7.4.1. One can verify that figure 7.4.1 is not an AFT (there is no left closing property on left infinite strings of 2's). We shall see this also because when we obtain the past set cover using the methods of section 5.3 and proposition 5.1.2, we shall see that it is irreducible, hence the left Krieger cover.
7.4. A Non-AFT

We will not go into the details of calculating the Perron-Frobenius operator in this example. Rather, we shall investigate the follower set equivalence classes of $X$. We will see right away that $O_X$ is a unique.

First, one can check by looking at the graph

$$s(111\ldots) = \{F_X(\mu_i)\}_i^3.$$  

Thus

$$S_1 = \bigcap_{i=1}^3 F_X(\mu_i) = \text{the full 2-shift on symbols 1 and 2.}$$

The other sets that are sources of some $x \in X^+$ include $\{F_X(\mu_1), F_X(\mu_3)\} = s(23222\ldots)$, and:

$$F_X(\mu_1) \cap F_X(\mu_2) = S_1 \cup 23F_X(\mu_3)$$

where $23F_X(\mu_3)$ denotes all $x \in X^+$ with the property that $x = 23x_+$ and $x_+ \in F_X(\mu_3)$. Furthermore $\{F_X(\mu_1), F_X(\mu_3)\} = s(144\ldots)$, and:

$$F_X(\mu_1) \cap F_X(\mu_3) = S_1 \cup 1F_X(\mu_2).$$

And since no follower set is a subset of another (each vertex has a label exiting it that is exclusive to that vertex), the final sources are the sets $\{F_X(\mu_1)\}, \{F_X(\mu_2)\}$, and $\{F_X(\mu_3)\}$. As each of these follower set equivalence classes corresponds to non-periodic points, we can immediately conclude by theorem 3.7.2 that $O_X$ satisfies condition $(I)$, the Perron-Frobenius operator satisfies condition $(I)$, and $O_X$ is purely infinite.
7.5. The Failure of the Converse of Proposition 5.4.4

With a bit of sweat, one can calculate the Perron-Frobenius operator as

\[
A = \begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 2 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2
\end{bmatrix}.
\]

The fact that \(A\) has 2's comes from the fact that there are two different symbols that conjugate a minimal projection to the same minimal projection. For example, \(P_3\) has both \(S_2^* P_3 S_2 \geq P_3\) and \(S_5^* P_3 S_5 \geq P_3\). One can easily see this by looking at figure 7.4.1, and noting \(P_3\) corresponds to the vertex \(\mu_3\). This matrix is irreducible, and thus its edge shift must be the left Krieger cover of the sofic shift \(X\).

7.5. The Failure of the Converse of Proposition 5.4.4

In light of the examples, and "seeing how its done" we can exhibit a counterexample to proposition 5.4.4 referred to in remark 5.4.6. Essentially, this can be achieved by taking an irreducible AFT, an irreducible non-AFT, and connecting them in an irreducible way. For example, consider the sofic shift \(X\) presented by figure 7.5.1. All that has been done is we have taken the even shift (and relabeled it), and tacked it to the non-AFT of figure 7.4.1.

Clearly, figure 7.5.1 is the follower set presentation of \(X\). We still must have \(s(BBB\ldots) = \{a, b\}\), and only the periodic point \(BBBB\ldots\) in the intersection of \(F_X(a)\) and \(F_X(b)\). Thus, the Perron-Frobenius operator \(A\) will not satisfy condition (I), and is also reducible (it is definitely not a permutation matrix!).
7.5. The Failure of the Converse of Proposition 5.4.4

Figure 7.5.1. A counter-example to proposition 5.4.4
Bibliography


11. Y. Katayama, K. Matsumoto and I. Watatani, Simple c*-algebras arising from \( \beta \)-expansion of real numbers, preprint.


