Learning in the real world environment: a classification model based on sensitivity to within-dimension and between-category variation of feature frequencies

Date

2018-06-22

Authors

Lam, Newman Ming Ki

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Research on machine learning has taken numerous different directions. The present study focussed on the microstructural characteristics of learning systems. It was postulated that learning systems consist of a macrostructure which controls the flow of information, and a micro-structure which manipulates information for decision making. A review of the literature suggested that the basic function of the micro-structure of learning systems was to make a choice among a set of alternatives. This decision function was then equated with the task of making classification decisions. On the basis of the requirements for practical learning systems, the feature frequency approach was chosen for model development. An analysis of the feature frequency approach indicated that an effective model must be sensitive to both within-dimension and between-category variations in frequencies. A model was then developed to provide for such sensitivities. The model was based on the Bayes' Theorem with an assumption of uniform prior probability of occurrence for the categories. This model was tested using data collected for neuropsychological diagnosis of children. Results of the tests showed that the model was capable of learning and provided a satisfactory level of performance. The performance of the model was compared with that of other models designed for the same purpose. The other models included NEXSYS, a rule-based system specially design for this type of diagnosis, discriminant analysis, which is a statistical technique widely used for pattern recognition, and neural networks, which attempt to simulate the neural activities of the brain. Results of the tests showed that the model's performance was comparable to that of the other models. Further analysis indicated that the model has certain advantages in that it has a simple structure, is capable of explaining its decisions, and is more efficient than the other models.

Description

Keywords

Machine learning

Citation