The first stars and the convective-reactive regime

Date

2021-01-11

Authors

Clarkson, Ondrea

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Due to their initially metal-free composition, the fi rst stars in the Universe, which are termed Population III (Pop III) stars, were fundamentally different than later generations of stars. As of now, we have yet to observe a truly metal-free star although much effort has been placed on this task and that of nding the second generation of stars. Given they were the first stars, Pop III stars are expected to have made the fi rst contributions to elements heavier than those produced during the Big Bang. For decades signi cant mixing between H and He burning layers has been reported in simulations of massive Pop III stars. In this thesis I investigate this poorly understood phenomenon and I posit that interactions between hydrogen and helium-burning layers in Pop III stars may have had a profound impact on their nucleosynthetic contribution to the early universe, and second generation of stars. First, I examined a single massive Pop III star. This was done using a combination of stellar evolution and single-zone nucleosynthesis calculations. For this project I investigated whether the abundances in the most iron-poor stars observed at the time of publication, were reproducible by an interaction between H and He-burning layers. Here it was found that the i process may operate under such conditions. The neutrons are able to ll in odd elements such as Na, creating what is sometimes called the `light-element abundance signature' in observed CEMP stars. I also present the finding that it is possible to produce elements heavier than iron as a result of the i process operating in massive Pop III stars. A parameter study I conducted on H-He interactions in a grid of 22/26 MESA stellar evolution simulations is then described. I grouped these interactions into four categories based on the core-contraction phase they occur in and the convective stability of the helium-burning layer involved. I also examine in detail the hydrogen burning conditions within massive Pop III stars and the behaviour of the CN cycle during H-He interactions. The latter is compared to observed CN ratios in CEMP stars. Finally, I describe the first ever 4pi 3D hydrodynamic simulations of H-He shells in Pop III stars. I also examine the challenges in modelling such con gurations and demonstrate the contributions I have made in modelling Pop III H and He shell systems in the PPMStar hydrodynamics code. My contributions apply to other stellar modelling applications as well.

Description

Keywords

Stars, Population III, Stellar Evolution, Nucleosynthesis

Citation