An investigation into the sources of iron and iron(II) in HNLC high-latitude oceans

dc.contributor.authorSchallenberg, Christina
dc.contributor.supervisorCullen, Jay T.
dc.date.accessioned2015-06-17T14:58:14Z
dc.date.available2015-06-17T14:58:14Z
dc.date.copyright2015en_US
dc.date.issued2015-06-17
dc.degree.departmentSchool of Earth and Ocean Sciencesen_US
dc.degree.levelDoctor of Philosophy Ph.D.en_US
dc.description.abstractHigh nutrient, low chlorophyll (HNLC) regions, where the availability of iron (Fe) limits primary production, comprise approximately 40% of the global ocean. Variability in Fe supply to these regions has the potential to impact Earth's climate by affecting the efficiency of the biological carbon pump, and thereby carbon dioxide uptake by the oceans. Characterizing Fe sources to HNLC regions is thus crucial for a better understanding of the connections and feedbacks between the ocean and climate change. This work addresses the question of Fe supply to two HNLC regions: the Southern Ocean and the subarctic northeast (NE) Pacific Ocean. In both regions, dissolved Fe (dFe) and the reduced form of iron, Fe(II), were measured in the water column. In the Southern Ocean, measurements were undertaken under the seasonal pack ice in the East Antarctic south of Australia. The results indicate that the sea ice represents a significant dFe source for the under-ice water column in spring, and that the Fe delivered from brine drainage and sea ice-melt likely contributes to the formation of the spring bloom at the ice edge. Shelf sediments were also found to supply dFe to the water column. Their effect was most pronounced near the shelf break and at depth, but offshore transport of Fe-enriched waters was also implicated. Fe(II) concentrations in spring were very low, most likely due to a lack of electron donors in the water column and limited solar radiation underneath the sea ice. Repeat measurements along a transect in the subarctic NE Pacific indicate that shelf sediments supply dFe and Fe(II) at depth, but their influence does not appear to extend offshore beyond several hundred kilometres. Episodic events such as the passage of sub-mesoscale eddies may transport subsurface waters a limited distance from the shelf break, supplying Fe(II) in a depth range where upwelling and deep mixing could bring it to the surface. Offshore, dFe shows little variability except in June 2012, where an aerosol deposition event is suspected to have increased dFe concentrations at depth. Fe(II) concentrations offshore are generally low, but show transient maxima at depth that likely result from remineralization processes in the oxygen deficient zone that stretches from ~600 to 1400 m depth in the subarctic NE Pacific. Elevated Fe(II) concentrations at depth were also observed in conjunction with the aerosol deposition event, which might indicate Fe(II) production associated with settling particles. However, the aerosol deposition event, which most likely stemmed from forest fires in Siberia, did not appear to trigger a phytoplankton bloom in surface waters, possibly due to a lack of Fe fertilization from the deposited material, or due to toxic effects on the resident phytoplankton community. Dust deposition from the atmosphere is considered a major Fe supply mechanism to remote HNLC regions, but the factors affecting Fe solubility of dust are poorly constrained. A laboratory experiment was conducted to test whether the presence of superoxide, a reactive oxygen species, enhances the dissolution of dust from different geographic source regions. The results indicate that superoxide may promote Fe solubilization from the dust sources tested, and that the effect of exposure to superoxide is on par with the Fe solubilizing effect of photochemical reactions. Given the possibility of widespread superoxide production by heterotrophic bacteria at all depths of the ocean, this finding suggests that significant Fe dissolution of dust particles could occur throughout the water column, not only in the well-lit surface layer.en_US
dc.description.proquestcode0425en_US
dc.description.proquestcode0996en_US
dc.description.proquestemailcschalle@uvic.caen_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/6265
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectironen_US
dc.subjectiron(II)en_US
dc.subjectGEOTRACESen_US
dc.subjectHNLCen_US
dc.titleAn investigation into the sources of iron and iron(II) in HNLC high-latitude oceansen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schallenberg_Christina_PhD_2015.pdf
Size:
7.48 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: