Regional sources and sinks of atmospheric particulate selenium in the United States based on seasonality profiles
Date
2023
Authors
Lao, Isabelle Renee
Feinberg, Aryeh
Borduas-Dedekind, Nadine
Journal Title
Journal ISSN
Volume Title
Publisher
Environmental Science & Technology
Abstract
Selenium (Se) is an essential nutrient for humans and enters our food chain through bioavailable Se in soil. Atmospheric deposition is a major source of Se to soils, driving the need to investigate the sources and sinks of atmospheric Se. Here, we used Se concentrations from PM2.5 data at 82 sites from 1988 to 2010 from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network in the US to identify the sources and sinks of particulate Se. We identified 6 distinct seasonal profiles of atmospheric Se, grouped by geographical location: West, Southwest, Midwest, Southeast, Northeast, and North Northeast. Across most of the regions, coal combustion is the largest Se source, with a terrestrial source dominating in the West. We also found evidence for gas-to-particle partitioning in the wintertime in the Northeast. Wet deposition is an important sink of particulate Se, as determined by Se/PM2.5 ratios. The Se concentrations from the IMPROVE network compare well to modeled output from a global chemistry-climate model, SOCOL-AER, except in the Southeast US. Our analysis constrains the sources and sinks of atmospheric Se, thereby improving the predictions of Se distribution under climate change.
Description
Keywords
selenium, biogeochemical cycle, PM2.5, measurement-model intercomparison, IMPROVE network, seasonality, sources, sinks, UN SDG 13: Climate Action
Citation
Lao, I. R., Feinberg, A., & Borduas-Dedekind N. (2023). Regional sources and sinks of atmospheric particulate selenium in the United States based on seasonality profiles. Environmental Science & Technology, 57(19), 7401-7409. https://doi.org/10.1021/acs.est.2c08243