On equivariant triangularization of matrix cocycles

dc.contributor.authorHoran, Joseph Anthony
dc.contributor.supervisorQuas, Anthony Nicholas
dc.contributor.supervisorBose, Christopher J.
dc.date.accessioned2015-04-14T21:33:23Z
dc.date.available2015-04-14T21:33:23Z
dc.date.copyright2015en_US
dc.date.issued2015-04-14
dc.degree.departmentDepartment of Mathematics and Statistics
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractThe Multiplicative Ergodic Theorem is a powerful tool for studying certain types of dynamical systems, involving real matrix cocycles. It gives a block diagonalization of these cocycles, according to the Lyapunov exponents. We ask if it is always possible to refine the diagonalization to a block upper-triangularization, and if not over the real numbers, then over the complex numbers. After building up to the posing of the question, we prove that there are counterexamples to this statement, and give concrete examples of matrix cocycles which cannot be block upper-triangularized.en_US
dc.description.proquestcode0405en_US
dc.description.proquestemailjahoran@uvic.caen_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/5970
dc.languageEnglisheng
dc.language.isoenen_US
dc.rights.tempAvailable to the World Wide Weben_US
dc.subjectmatrix cocyclesen_US
dc.subjectmultiplicative ergodic theoremen_US
dc.subjectequivariant triangularizationen_US
dc.subjectdynamical systemsen_US
dc.subjectergodic theoryen_US
dc.subjectskew productsen_US
dc.titleOn equivariant triangularization of matrix cocyclesen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Horan_Joseph_MSc_2015.pdf
Size:
569.61 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: