The Growth and Enrichment of the Intragroup Gas




Liang, Lichen

Journal Title

Journal ISSN

Volume Title



The observable properties of galaxy groups, and especially the thermal and chemical properties of the intragroup medium (IGrM), provide important constraints on the different feedback processes associated with massive galaxy formation and evolution. In this {work}, we present a detailed analysis of the global properties of simulated galaxy groups with X-ray temperatures in the range $0.5 - 2$ keV over the redshift range $0 \leq z \leq 3$. The groups are drawn from a cosmological smoothed particle hydrodynamics simulation that includes a well-constrained prescription for momentum-driven, galactic outflows powered by stars and supernovae but no explicit treatment of AGN feedback. Our aims are (a) to establish a baseline against which we will compare future models; (b) to identify model successes that are genuinely due to stellar/supernovae-powered outflows; and (c) to pinpoint mismatches that not only signal the need for AGN feedback but also constrain the nature of this feedback. We find that even without AGN feedback, our simulation successfully reproduces the observed present-day group properties such as the IGrM mass fraction, the various X-ray luminosity-temperature-entropy scaling relations, as well as both the mass-weighted and the emission-weighted IGrM iron and silicon abundance versus IGrM temperature relationships, for all but the most massive groups. We also show that these trends evolve self-similarly for $z < 1$, in agreement with the observations. In contrast to the usual expectations, we do not see any evidence of the IGrM undergoing catastrophic cooling. And yet, the $z=0$ group stellar mass is a factor of $\sim 2$ too high. Probing further, we find that the latter is due to the build-up of cold gas in the massive galaxies {\it before} they are incorporated inside groups. This not only indicates that another feedback mechanism must activate as soon as the galaxies achieve $M_*\approx$ a few $\times 10^{10}\;\rm{M_{\odot}}$ but that this feedback mechanism must be powerful enough to expel a significant fraction of the halo gas component from the galactic halos. ``Maintenance-mode" AGN feedback of the kind observed in galaxy clusters will not do. At the same time, we find that stellar/supernovae-powered winds are essential for understanding the metal abundances in the IGrM and these results are expected to be relatively insensitive to the addition of AGN feedback. We further examine the detailed distribution of the metals within the groups and their origin. We find that our simulated abundance profiles fit the observational data pretty well except that in the innermost regions, there appears to have an excess of metals in the IGrM, which is attributed to the overproduction of stars in the central galaxies. The fractional contribution of the different types of galaxies varies with radial distances from the group center. While the enrichment in the core regions of the groups is dominated by the central and satellite galaxies, the external galaxies become more important contributors to the metals at $r\simgreat R_{500}$. The IGrM at the groups' outskirts is enriched at comparatively higher redshifts, and by relatively less massive galaxies.



Galaxy group, Galaxy formation and evolution, X-ray, Numerical simulation