U-Net ship detection in satellite optical imagery
Date
2020-10-05
Authors
Smith, Benjamin
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Deep learning ship detection in satellite optical imagery suffers from false positive occurrences with clouds, landmasses, and man-made objects that interfere with correctly classifying ships. A custom U-Net is implemented to challenge this issue and aims to capture more features in order to provide a more accurate class accuracy. This model is trained with two different systematic architectures: single node architecture and a parameter server variant whose workers act as a boosting mechanism. To ex-tend this effort, a refining method of offline hard example mining aims to improve the accuracy of the trained models in both the validation and target datasets however it results in over correction and a decrease in accuracy. The single node architecture results in 92% class accuracy over the validation dataset and 68% over the target dataset. This exceeds class accuracy scores in related works which reached up to 88%. A parameter server variant results in class accuracy of 86% over the validation set and 73% over the target dataset. The custom U-Net is able to achieve acceptable and high class accuracy on a subset of training data keeping training time and cost low in cloud based solutions.
Description
Keywords
distributed systems, u-net, parameter server, geospatial data, satellite optical imagery, deep learning, object segmentation, ship detection