Surface winds, climate variability, and power outages in British Columbia
Date
2021-03
Authors
He, Yanping
Zwiers, Francis W.
Quoc, Nguyen
Journal Title
Journal ISSN
Volume Title
Publisher
Pacific Climate Impacts Consortium (PCIC)
Abstract
Relationships among surface wind speed, North Pacific climate variability, Pacific climate variability, and tree/weather related power outages are investigated in forest rich British Columbia using almost 12 years of BC Hydro (BCH) wind and power outage data, two decades of BC weather station observations and two climate variability indices. Strong surface wind is found to be the dominate cause of power outages that are reported as being tree or weather related. The observed regional fraction of power outage days and the number of influenced customers per outage day increases quickly when the daily maximum wind speed (DMWS) exceeds 50 km/hr. These extreme winds are mostly observed during winter, with substantial interannual variability in BC coastal regions in the frequency of strong days when DMWS exceeds 50 km/hr. A simple empirical outage model is developed using monthly DMWS frequency in southern coastal BC as a predictor. Cross-validation, which is used to estimate the model's out-of-sample performance, suggests a useful level of skill in hindcasting subseasonal to interannual variations in the frequency of observed regional tree/weather outage occurrence during the 2005 to 2017 period when power outage data are available. The widespread power outage event of December 2006 can also be captured when winter windstorm information is added as an additional model input.
Description
Keywords
UN SDG 13: Climate Action, #project and summary reports, Pacific Climate Impacts Consortium (PCIC)