Minimax D-optimal designs for regression models with heteroscedastic errors

Date

2021-04-20

Authors

Yzenbrandt, Kai

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Minimax D-optimal designs for regression models with heteroscedastic errors are studied and constructed. These designs are robust against possible misspecification of the error variance in the model. We propose a flexible assumption for the error variance and use a minimax approach to define robust designs. As usual it is hard to find robust designs analytically, since the associated design problem is not a convex optimization problem. However, the minimax D-optimal design problem has an objective function as a difference of two convex functions. An effective algorithm is developed to compute minimax D-optimal designs under the least squares estimator and generalized least squares estimator. The algorithm can be applied to construct minimax D-optimal designs for any linear or nonlinear regression model with heteroscedastic errors. In addition, several theoretical results are obtained for the minimax D-optimal designs.

Description

Keywords

robust regression design, minimax design, D-optimal design, non-convex optimization, generalized least squares estimator

Citation