K-theory correspondences and the Fourier-Mukai transform

dc.contributor.authorHudson, Daniel
dc.contributor.supervisorEmerson, Heath
dc.contributor.supervisorPutnam, Ian F.
dc.date.accessioned2019-05-02T23:47:14Z
dc.date.available2019-05-02T23:47:14Z
dc.date.copyright2019en_US
dc.date.issued2019-05-02
dc.degree.departmentDepartment of Mathematics and Statisticsen_US
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractThe goal of this thesis is to give an introduction to the geometric picture of bivariant K-theory developed by Emerson and Meyer building on the ideas Connes and Skandalis, and then to apply this machinery to give a geometric proof of a result of Emerson. We begin by giving an overview of topological K-theory, necessary for developing bivariant K-theory. Then we discuss Kasparov's analytic bivariant K-theory, and from there develop topological bivariant K-theory. In the final chapter we state and prove the result of Emerson.en_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/10837
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.subjectK-Theoryen_US
dc.subjectAlgebraic Topologyen_US
dc.subjectKK-Theoryen_US
dc.subjectOperator Algebrasen_US
dc.subjectNon-Commutative Geometryen_US
dc.titleK-theory correspondences and the Fourier-Mukai transformen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hudson_Daniel_MSc_2019.pdf
Size:
989.93 KB
Format:
Adobe Portable Document Format
Description:
Thesis Document
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: