K-theory correspondences and the Fourier-Mukai transform
dc.contributor.author | Hudson, Daniel | |
dc.contributor.supervisor | Emerson, Heath | |
dc.contributor.supervisor | Putnam, Ian F. | |
dc.date.accessioned | 2019-05-02T23:47:14Z | |
dc.date.available | 2019-05-02T23:47:14Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019-05-02 | |
dc.degree.department | Department of Mathematics and Statistics | en_US |
dc.degree.level | Master of Science M.Sc. | en_US |
dc.description.abstract | The goal of this thesis is to give an introduction to the geometric picture of bivariant K-theory developed by Emerson and Meyer building on the ideas Connes and Skandalis, and then to apply this machinery to give a geometric proof of a result of Emerson. We begin by giving an overview of topological K-theory, necessary for developing bivariant K-theory. Then we discuss Kasparov's analytic bivariant K-theory, and from there develop topological bivariant K-theory. In the final chapter we state and prove the result of Emerson. | en_US |
dc.description.scholarlevel | Graduate | en_US |
dc.identifier.uri | http://hdl.handle.net/1828/10837 | |
dc.language | English | eng |
dc.language.iso | en | en_US |
dc.rights | Available to the World Wide Web | en_US |
dc.subject | K-Theory | en_US |
dc.subject | Algebraic Topology | en_US |
dc.subject | KK-Theory | en_US |
dc.subject | Operator Algebras | en_US |
dc.subject | Non-Commutative Geometry | en_US |
dc.title | K-theory correspondences and the Fourier-Mukai transform | en_US |
dc.type | Thesis | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Hudson_Daniel_MSc_2019.pdf
- Size:
- 989.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Thesis Document
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: