An Asymptotic Existence Theory on Incomplete Mutually Orthogonal Latin Squares

dc.contributor.authorvan Bommel, Christopher Martin
dc.contributor.supervisorDukes, Peter
dc.date.accessioned2015-03-23T22:36:15Z
dc.date.available2015-03-23T22:36:15Z
dc.date.copyright2015en_US
dc.date.issued2015-03-23
dc.degree.departmentDepartment of Mathematics and Statistics
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractAn incomplete Latin square is a v x v array with an empty n x n subarray with every row and every column containing each symbol at most once and no row or column with an empty cell containing one of the last n symbols. A set of t incomplete mutually orthogonal Latin squares of order v and hole size n is a set of t incomplete Latin squares (containing the same empty subarray on the same set of symbols) with a natural extension to the condition of orthogonality. The existence of such sets have been previously explored only for small values of t. We determine an asymptotic result for the existence of t incomplete mutually orthogonal Latin squares for general t requiring large holes, which we develop from our results on incomplete pairwise balanced designs and incomplete group divisible designs.en_US
dc.description.scholarlevelGraduateen_US
dc.identifier.bibliographicCitationP.J. Dukes and C.M. van Bommel, Mutually orthogonal latin squares with large holes. Journal of Statistical Planning and Inference 159 (2015), 81-89.en_US
dc.identifier.urihttp://hdl.handle.net/1828/5930
dc.languageEnglisheng
dc.language.isoenen_US
dc.rights.tempAvailable to the World Wide Weben_US
dc.subjectLatin squareen_US
dc.subjectHoleen_US
dc.subjectPairwise balanced designen_US
dc.titleAn Asymptotic Existence Theory on Incomplete Mutually Orthogonal Latin Squaresen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
van Bommel_Christopher_MSc_2015.pdf
Size:
481.92 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: