Interactive learning laboratories of complex models in undergraduate biomechanics




Geneau, Dan

Journal Title

Journal ISSN

Volume Title



Undergraduate biomechanics is classically viewed as one of the most difficult courses included in kinesiology programs, often leading to poor student performance and attitudes. By adjusting the interactions students have with course material, it may be possible to positively impact student outcomes. Past work has shown that interactive learning episodes can positively impact student attitudes toward difficult course content, as well as improve student performance variables (Catena & Carbonneau, n.d.; Moreno & Mayer, 2007; Pandy, Petrosino, Austin, & Barr, 2004; Zhang, Zhou, Briggs, & Nunamaker, 2005). In the present study, I investigated the effectiveness of interactive, exploratory based learning episodes in undergraduate biomechanics laboratory sessions. Episodes consisted of a brief introduction of the laboratory topic, which was consistent across groups, followed immediately by a pre- laboratory assessment. Students then completed the laboratory, which either included exploration in interactive computer applications or still images of the applications displaying the necessary information for completion. Intervention sessions utilized custom interactive computer applications where students were prompted to explore course concepts centered around reciprocal relationships between variables specific to each laboratory topic. Student performance was collected and assessed for Work Loop Muscle Mechanics and EMG signal processing laboratory topics at two independent instances. For both learning topics, intervention and control groups both, improved their scores between pre- and post-laboratory assessments indicating learning. In the post-laboratory testing, the intervention group significantly outperformed the control group on the most challenging assessment question (P = 0.005). Adversely, the intervention group achieved significantly lower scores for the simplest signal processing questionnaire item (P <0.001). Although the present study contained mixed results, it supports the utilization of exploratory based learning episodes on typically challenging topics with abstract concepts. Further investigation is needed in order to explore the chronic learning effects of such instructional methods.



Biomechanics, Exploratory Learning, Active Learning, Learning Models, Education, Work Loops