Relative difference sets partitioned by cosets

dc.contributor.authorDukes, Peter J.
dc.contributor.authorLing, Alan C. H.
dc.date.accessioned2019-01-24T17:53:45Z
dc.date.available2019-01-24T17:53:45Z
dc.date.copyright2017en_US
dc.date.issued2017
dc.description.abstractWe explore classical (relative) difference sets intersected with the cosets of a subgroup of small index. The intersection sizes are governed by quadratic Diophantine equations. Developing the intersections in the subgroup yields an interesting class of group divisible designs. From this and the Bose-Shrikhande-Parker construction, we obtain some new sets of mutually orthogonal latin squares. We also briefly consider optical orthogonal codes and difference triangle systems.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipSupported by NSERC grant 312595-2010.en_US
dc.identifier.citationDukes, P. J. & Ling, A. C. H. (2017). Relative difference sets partitioned by cosets. The Electronic Journal of Combinatorics, 24(3), article P3.64.en_US
dc.identifier.urihttps://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i3p64
dc.identifier.urihttp://hdl.handle.net/1828/10538
dc.language.isoenen_US
dc.publisherThe Electronic Journal of Combinatoricsen_US
dc.subjectrelative difference seten_US
dc.subjectmutually orthogonal latin squareen_US
dc.subjectoptical orthogonal codeen_US
dc.subjectdifference triangle systemen_US
dc.titleRelative difference sets partitioned by cosetsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dukes_peter_eljc_2017.pdf
Size:
385.86 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: