Algorithms and combinatorics of maximal compact codes

dc.contributor.authorDeugau, Christopher Jordan
dc.contributor.supervisorRuskey, Frank
dc.contributor.supervisorRoelants van Baronaigien, Dominique
dc.date.accessioned2010-01-25T17:54:08Z
dc.date.available2010-01-25T17:54:08Z
dc.date.copyright2006en
dc.date.issued2010-01-25T17:54:08Z
dc.degree.departmentDept. of Computer Scienceen
dc.degree.levelMaster of Science M.Sc.en
dc.description.abstractThe implementation of two different algorithms for generating compact codes of some size N are presented. An analysis of both algorithms is given. in an attempt to prove whether or not the algorithms run in constant amortized time. Meta-Fibonacci sequences are also investigated in this paper. Using a particular numbering on k-ary trees, we find that a group of meta-Fibonacci sequences count the number of nodes at the bottom level of these k-ary trees. These meta-Fibonacci sequences are also related to compact codes. Finally, generating functions are proved for the meta-Fibonacci sequences discussed.en
dc.identifier.urihttp://hdl.handle.net/1828/2101
dc.languageEnglisheng
dc.language.isoenen
dc.rightsAvailable to the World Wide Weben
dc.subjectcombinatorial analysisen
dc.subjectalgorithmsen
dc.subject.lcshUVic Subject Index::Sciences and Engineering::Applied Sciences::Computer scienceen
dc.titleAlgorithms and combinatorics of maximal compact codesen
dc.typeThesisen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
deugau_c_MSc.pdf
Size:
7.78 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: