A novel approach for obtaining new identities of the λ extension of q-Euler polynomials arising from the q-umbral calculus
dc.contributor.author | Araci, Serkan | |
dc.contributor.author | Acikgoz, Mehmet | |
dc.contributor.author | Diagana, Toka | |
dc.contributor.author | Srivastava, H.M. | |
dc.date.accessioned | 2019-07-31T16:57:57Z | |
dc.date.available | 2019-07-31T16:57:57Z | |
dc.date.copyright | 2017 | en_US |
dc.date.issued | 2017 | |
dc.description.abstract | In this article, a new q-generalization of the Apostol-Euler polynomials is introduced using the usual q-exponential function. We make use of such a generalization to derive several properties arising from the q-umbral calculus. | en_US |
dc.description.reviewstatus | Reviewed | en_US |
dc.description.scholarlevel | Faculty | en_US |
dc.identifier.citation | Araci, S.; Acikgoz, M.; Diagana, T.; & Srivastava, H. M. (2017). A novel approach for obtaining new identities of the λ extension of q-Euler polynomials arising from the q-umbral calculus. Journal of Nonlinear Sciences and Applications, 10(4), 1316- 1325. DOI: 10.22436/jnsa.010.04.03 | en_US |
dc.identifier.uri | http://dx.doi.org/10.22436/jnsa.010.04.03 | |
dc.identifier.uri | http://hdl.handle.net/1828/11007 | |
dc.language.iso | en | en_US |
dc.publisher | Journal of Nonlinear Sciences and Applications | en_US |
dc.subject | q-Apostol-Euler polynomials | en_US |
dc.subject | q-numbers | en_US |
dc.subject | q-exponential function | en_US |
dc.subject | q-umbral calculus | en_US |
dc.subject | (λ،q)-Euler numbers | en_US |
dc.subject | (λ،q)-Euler polynomials | en_US |
dc.subject | properties and identities | en_US |
dc.title | A novel approach for obtaining new identities of the λ extension of q-Euler polynomials arising from the q-umbral calculus | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- araci_serkan_jnonlinearsciappl_2017.pdf
- Size:
- 475.52 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: