Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow

dc.contributor.authorBowles, Malcolm
dc.contributor.supervisorAgueh, Martial
dc.date.accessioned2014-08-22T20:06:23Z
dc.date.available2014-08-22T20:06:23Z
dc.date.copyright2014en_US
dc.date.issued2014-08-22
dc.degree.departmentDepartment of Mathematics and Statisticsen_US
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractIn this thesis, we study a linear fractional Fokker-Planck equation that models non-local (`fractional') diffusion in the presence of a potential field. The non-locality is due to the appearance of the `fractional Laplacian' in the corresponding PDE, in place of the classical Laplacian which distinguishes the case of regular (Gaussian) diffusion. Motivated by the observation that, in contrast to the classical Fokker-Planck equation (describing regular diffusion in the presence of a potential field), there is no natural gradient flow formulation for its fractional counterpart, we prove existence of weak solutions to this fractional Fokker-Planck equation by combining a splitting technique together with a Wasserstein gradient flow formulation. An explicit iterative construction is given, which we prove weakly converges to a weak solution of this PDE.en_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/5591
dc.languageEnglisheng
dc.language.isoenen_US
dc.rights.tempAvailable to the World Wide Weben_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectsplittingen_US
dc.subjectFractional Laplacianen_US
dc.subjectWasserstein Gradient Flowen_US
dc.titleWeak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flowen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bowles_Malcolm_MSc_2014.pdf
Size:
426.38 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: