The early phase of spark ignition




Pitt, Philip Lawrence

Journal Title

Journal ISSN

Volume Title



In this dissertation, some practical ignition techniques are presented that show how some problems of lean-burn combustion can be overcome. Then, to shed light on the effects of the ignition techniques described, the focus shifts to the more specific problem of the early phase of spark ignition. Thermal models of ignition are reviewed. These models treat the energy provided by the electrical discharge as a point source, delivered infinitely fast and creating a spherically symmetric ignition kernel. The thesis challenges the basis of these thermal models by reviewing the work of many investigators who have clearly shown that the temporal characteristics of the discharge have a profound effect upon ignition. Photographic evidence of the early phase of ignition, as well as other evidence from the literature, is also presented. The evidence clearly demonstrates that the morphology of spark kernels in the early phase of development is toroidal, not spherical as suggested by thermal models. A new perspective for ignition, a fluid dynamic point of view, is described. The common ignition devices are then classified according to fluid dynamics. A model describing the behaviour of spark kernels is presented, which extends a previously established mixing model for plasma jets, to the realm of conventional axial discharges. Comparison of the model behaviour to some limited data is made. The model is modified by including the effect of heat addition from combustion, and ignition criteria are discussed.



Spark ignition engines