Ferric iron in CaTiO₃ perovskite as an oxygen barometer for kimberlitic magmas : experimental calibration and applications

dc.contributor.authorBellis, Anthony
dc.contributor.supervisorCanil, Dante
dc.date.accessioned2009-09-24T18:05:11Z
dc.date.available2009-09-24T18:05:11Z
dc.date.copyright2005en
dc.date.issued2009-09-24T18:05:11Z
dc.degree.departmentSchool of Earth and Ocean Sciencesen
dc.degree.levelMaster of Science M.Sc.en
dc.description.abstractAn oxygen barometer to estimate fO2 during the crystallization of kimberlites is developed using the Fe content of perovskite (Pv), a common groundmass phase in these rocks. With increasing fO2, more Fe exists in the kimberlitic liquid as Fe3+, and thus partitions into Pv, which accepts only Fe3+ into its crystal structure. Experiments to study the partitioning of Fe3+ between Pv and kimberlite liquid were conducted on simple and complex anhydrous kimberlite bulk compositions at 100 kPa over a range temperatures (1130 - 1300°C) and of fO2's from NN0+4 to NNO-5 (NNO, nickel-nickel oxide buffer) and at Nb and REE levels of 0 to 1.5 wt% and 1500 ppm respectively. For Nb-free experiments, the Fe2O3 content of Pv increases with fO2 according to the relation (at 2σ): Fe2O3 Pv (wt%) = 0.25 (0.04) ?NNO + 1.83(0.06) For experiments doped with Nb, two universal equations for the relationship between the Fe and Nb in Pv, and fO2 were defined. Based on a slope intercept fitting method (SIM) we obtain: Log Fe (0.04)=0.058(0.004)* ?NNO + 0.26(0.02)*Log Nb - 0.91(0.03) Based on a multiple linear regression method (MLR): Fe (0.031)= 0.404(0)* NNO + 0.50(0.021)*Nb + 0.030(0.001) with uncertainties at 2o, and Nb and Fe as cation units per 3 oxygens in both equations. Over the range of conditions of our experiments, these relationships show no temperature (T) dependence and are not affected by the bulk Fe content of the kimberlite starting material. The Fe2O3 content of Pv from natural kimberlites compiled from the literature corresponds to fO2 conditions of NNO-5 to NNO+1. Data on zoned Pv from a single kimberlite, the Phoenix pipe, suggests that cores record lower fO2 than rims, NNO-1 in = cores compared to NNO+1 in rims. Within the Somerset Island cluster, Pv from six pipes display an average relative f02 of NNO-4 to NNO+I . Within individual kimberlite pipes, however, the fO2 range recorded by Pv narrows to NNO-2.6 +/- 0.6 within the Nikos 1 pipe, and NNO +1- 2 within the Zulu pipe. Within the Lac de Gras cluster, Pv from five pipes display an average relative fO2 of NNO-2.5 to NNO+6. However, within a single kimberlite, the Grizzly pipe, the fO2 range recorded by Pv narrows to NNO+/- 1. The range in fO2 recorded by Pv may result from the diversity and complexity of processes that ensue during the emplacement of kimberlite magma (crystallization, assimilation and degassing), a detailed record of which is revealed by a comprehensive study of perovskite parageneses in these complex rocks.en
dc.identifier.urihttp://hdl.handle.net/1828/1764
dc.languageEnglisheng
dc.language.isoenen
dc.rightsAvailable to the World Wide Weben
dc.subjectkimberliteen
dc.subjectperovskiteen
dc.subject.lcshUVic Subject Index::Sciences and Engineering::Earth and Ocean Sciencesen
dc.titleFerric iron in CaTiO₃ perovskite as an oxygen barometer for kimberlitic magmas : experimental calibration and applicationsen
dc.typeThesisen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bellis_anthony_MSc_2006.pdf
Size:
19.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: