An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

dc.contributor.authorEhlting, Jürgen
dc.contributor.authorSauveplane, Vincent
dc.contributor.authorOlry, Alexandre
dc.contributor.authorGinglinger, Jean-François
dc.contributor.authorProvart, Nicholas J
dc.contributor.authorWerck-Reichhart, Danièle
dc.date.accessioned2014-08-07T20:40:55Z
dc.date.available2014-08-07T20:40:55Z
dc.date.copyright2008en_US
dc.date.issued2008-04-23
dc.descriptionBioMed Centralen_US
dc.description.abstractBackground: Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results: We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion: The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipThis work was supported by an International Reintegration Grant of the European Union to JE (MIRG-CT-2006-036537). VS and AO are grateful for support of BayerCropScience and VS to the support of Agence Nationale de la Recherche Technique for a CIFRE funding. JFG was funded by the Human Frontier Programme RGP0065/2005-C.en_US
dc.identifier.citationEhlting et al.: An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biology 2008, 8 :47en_US
dc.identifier.urihttp://www.biomedcentral.com/1471-2229/8/47
dc.identifier.urihttp://dx.doi.org/10.1186/1471-2229-8-47
dc.identifier.urihttp://hdl.handle.net/1828/5520
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.titleAn extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thalianaen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ehlting_Jurgen_BMCPlantBiol_2008.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Ehlting_Jurgen_BMCPlantBiol_2008.pdf
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: