Ergodic theory of mulitidimensional random dynamical systems

dc.contributor.authorHsieh, Li-Yu Shelley
dc.contributor.supervisorBose, Chris
dc.date.accessioned2008-11-13T23:47:55Z
dc.date.available2008-11-13T23:47:55Z
dc.date.copyright2008en_US
dc.date.issued2008-11-13T23:47:55Z
dc.degree.departmentDept. of Mathematics and Statisticsen_US
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractGiven a random dynamical system T constructed from Jablonski transformations, consider its Perron-Frobenius operator P_T. We prove a weak form of the Lasota-Yorke inequality for P_T and thereby prove the existence of BV- invariant densities for T. Using the Spectral Decomposition Theorem we prove that the support of an invariant density is open a.e. and give conditions such that the invariant density for T is unique. We study the asymptotic behavior of the Markov operator P_T, especially when T has a unique absolutely continuous invariant measure (ACIM). Under the assumption of uniqueness, we obtain spectral stability in the sense of Keller. As an application, we can use Ulam's method to approximate the invariant density of P_T.en_US
dc.identifier.urihttp://hdl.handle.net/1828/1253
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.subjectLasota-Yorke inequalityen_US
dc.subjectPerron-Frobenius operartoren_US
dc.subjectrandom mapen_US
dc.subjectspectral decomposition theoremen_US
dc.subjectUlam's methoden_US
dc.subject.lcshUVic Subject Index::Sciences and Engineering::Mathematicsen_US
dc.titleErgodic theory of mulitidimensional random dynamical systemsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis---Shelley.pdf
Size:
629.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.94 KB
Format:
Item-specific license agreed upon to submission
Description: