A new discretization scheme for the non-isotropic Stockwell transform

dc.contributor.authorSrivastava, Hari M.
dc.contributor.authorTanary, Azhar Y.
dc.contributor.authorShah, Firdous A.
dc.date.accessioned2024-02-02T22:24:39Z
dc.date.available2024-02-02T22:24:39Z
dc.date.copyright2023en_US
dc.date.issued2023
dc.description.abstractTo avoid the undesired angular expansion of the sampling grid in the discrete non-isotropic Stockwell transform, in this communication we propose a scale-dependent discretization scheme that controls both the radial and angular expansions in unison. Based on the new discretization scheme, we derive a sufficient condition for the construction of Stockwell frames in L²(ℝ²). .en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationSrivastava, H. M., Tantary, A. Y., & Shah, F. A. (2023). A new discretization scheme for the non-isotropic Stockwell transform. Mathematics, 11(8), 1839. https://doi.org/10.3390/math11081839en_US
dc.identifier.urihttps://doi.org/10.3390/math11081839
dc.identifier.urihttp://hdl.handle.net/1828/15932
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectstockwell transformen_US
dc.subjecttwo-dimensional fourier transformen_US
dc.subjectdiscretizationen_US
dc.subjectframeen_US
dc.titleA new discretization scheme for the non-isotropic Stockwell transformen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
srivastava_hari_mathematics_2023.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: