A new discretization scheme for the non-isotropic Stockwell transform
dc.contributor.author | Srivastava, Hari M. | |
dc.contributor.author | Tanary, Azhar Y. | |
dc.contributor.author | Shah, Firdous A. | |
dc.date.accessioned | 2024-02-02T22:24:39Z | |
dc.date.available | 2024-02-02T22:24:39Z | |
dc.date.copyright | 2023 | en_US |
dc.date.issued | 2023 | |
dc.description.abstract | To avoid the undesired angular expansion of the sampling grid in the discrete non-isotropic Stockwell transform, in this communication we propose a scale-dependent discretization scheme that controls both the radial and angular expansions in unison. Based on the new discretization scheme, we derive a sufficient condition for the construction of Stockwell frames in L²(ℝ²). . | en_US |
dc.description.reviewstatus | Reviewed | en_US |
dc.description.scholarlevel | Faculty | en_US |
dc.identifier.citation | Srivastava, H. M., Tantary, A. Y., & Shah, F. A. (2023). A new discretization scheme for the non-isotropic Stockwell transform. Mathematics, 11(8), 1839. https://doi.org/10.3390/math11081839 | en_US |
dc.identifier.uri | https://doi.org/10.3390/math11081839 | |
dc.identifier.uri | http://hdl.handle.net/1828/15932 | |
dc.language.iso | en | en_US |
dc.publisher | Mathematics | en_US |
dc.subject | stockwell transform | en_US |
dc.subject | two-dimensional fourier transform | en_US |
dc.subject | discretization | en_US |
dc.subject | frame | en_US |
dc.title | A new discretization scheme for the non-isotropic Stockwell transform | en_US |
dc.type | Article | en_US |