Pairwise Balanced Designs of Dimension Three

dc.contributor.authorNiezen, Joanna
dc.contributor.supervisorDukes, Peter
dc.date.accessioned2013-12-20T18:53:48Z
dc.date.available2013-12-20T18:53:48Z
dc.date.copyright2013en_US
dc.date.issued2013-12-20
dc.degree.departmentDepartment of Mathematics and Statistics
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractA linear space is a set of points and lines such that any pair of points lie on exactly one line together. This is equivalent to a pairwise balanced design PBD(v, K), where there are v points, lines are regarded as blocks, and K ⊆ Z≥2 denotes the set of allowed block sizes. The dimension of a linear space is the maximum integer d such that any set of d points is contained in a proper subspace. Specifically for K = {3, 4, 5}, we determine which values of v admit PBD(v,K) of dimension at least three for all but a short list of possible exceptions under 50. We also observe that dimension can be reduced via a substitution argument.en_US
dc.description.proquestcode0405en_US
dc.description.proquestemailjniezen@uvic.caen_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/5102
dc.languageEnglisheng
dc.language.isoenen_US
dc.rights.tempAvailable to the World Wide Weben_US
dc.subjectpairwise balanced designen_US
dc.subjectPBDen_US
dc.subjectLatin squareen_US
dc.subjectMOLSen_US
dc.subjectGDDen_US
dc.subjectdimensionen_US
dc.subjectlinear spaceen_US
dc.subjectgame of Seten_US
dc.subjectSteiner triple systemen_US
dc.subjectSTSen_US
dc.subjectSteiner spaceen_US
dc.subjectsubspaceen_US
dc.subjectWilson's constructionen_US
dc.titlePairwise Balanced Designs of Dimension Threeen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Niezen_Joanna_MSc_2013.pdf
Size:
201.81 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: