Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data

dc.contributor.authorOpoku, Eugene A.
dc.contributor.authorAhmed, Syed Ejaz
dc.contributor.authorSong, Yin
dc.contributor.authorNathoo, Farouk S.
dc.date.accessioned2021-04-03T14:44:31Z
dc.date.available2021-04-03T14:44:31Z
dc.date.copyright2021en_US
dc.date.issued2021
dc.description.abstractElectroencephalography/Magnetoencephalography (EEG/MEG) source localization involves the estimation of neural activity inside the brain volume that underlies the EEG/MEG measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture model for source reconstruction and implement Ant Colony System (ACS) optimization coupled with Iterated Conditional Modes (ICM) for computing estimates of the neural source activity. Our approach is evaluated using simulation studies and a real data application in which we implement a nonparametric bootstrap for interval estimation. We demonstrate improved performance of the ACS-ICM algorithm as compared to existing methodology for the same spatiotemporal model.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipThis research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and supported by infrastructure provided by Compute Canada (www. computecanada.ca (accessed on 14 November 2020) and data sourced from [13].en_US
dc.identifier.citationOpoku, E. A., Ahmed, S. E., Song, Y., & Nathoo, F. S. (2021). Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data. Entropy, 23(3), 1-35. https://doi.org/10.3390/e23030329.en_US
dc.identifier.urihttps://doi.org/10.3390/e23030329
dc.identifier.urihttp://hdl.handle.net/1828/12818
dc.language.isoenen_US
dc.publisherEntropyen_US
dc.subjectant colony system
dc.subjectbayesian spatial mixture model
dc.subjectinverse problem
dc.subjectnonparamtric boostrap
dc.subjectEEG/MEG data
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleAnt Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Dataen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Opoku_EugeneA_Entropy_2021.pdf
Size:
7.75 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: