Measurement and Monte Carlo simulation of electron fields for modulated electron radiation therapy

dc.contributor.authorLloyd, Samantha A. M.
dc.contributor.supervisorGagne, Isabelle M
dc.contributor.supervisorJirasek, Andrew
dc.date.accessioned2017-03-15T17:07:17Z
dc.date.available2017-03-15T17:07:17Z
dc.date.copyright2017en_US
dc.date.issued2017-03-15
dc.degree.departmentDepartment of Physics and Astronomy
dc.degree.levelDoctor of Philosophy Ph.D.en_US
dc.description.abstractThis work establishes a framework for Monte Carlo simulations of complex, modulated electron fields produced by Varian's TrueBeam medical linear accelerator for investigations into modulated electron radiation therapy (MERT) and combined modulated photon and electron radiation therapy (MPERT). Both MERT and MPERT have shown potential for reduced low dose to normal tissue without compromising target coverage in the external beam radiation therapy of some breast, chest wall, head and neck, and scalp cancers. This reduction in low dose could translate into the reduction of immediate radiation side effects as well as long term morbidities and incidence of secondary cancers. Monte Carlo dose calculations are widely accepted as the gold standard for complex radiation therapy dose modelling, and are used almost exclusively for modelling the complex electron fields involved in MERT and MPERT. The introduction of Varian's newest linear accelerator, the TrueBeam, necessitated the development of new Monte Carlo models in order to further research into the potential role of MERT and MPERT in radiation therapy. This was complicated by the fact that the field independent internal schematics of TrueBeam were kept proprietary, unlike in previous generations of Varian accelerators. Two approaches are presented for performing Monte Carlo simulations of complex electron fields produced by TrueBeam. In the first approach, the dosimetric characteristics of electron fields produced by the TrueBeam were first compared with those produced by an older Varian accelerator, the Clinac 21EX. Differences in depth and profile characteristics of fields produced by the TrueBeam and those produced by the Clianc 21EX were found to be within 3%/3 mm. Given this information, complete accelerator models of the Clinac 21EX, based on its known internal geometry, were then successfully modified in order to simulate 12 and 20 MeV electron fields produced by the TrueBeam to within 2%/2 mm of measured depth and profile curves and to within 3.7% of measured relative output. While the 6 MeV TrueBeam model agreed with measured depth and profile data to within 3%/3 mm, the modified Clinac 21EX model was unable to reproduce trends in relative output as a function of field size with acceptable accuracy. The second approach to modelling TrueBeam electron fields used phase-space source files provided by Varian that were scored below the field-independent portions of the accelerator head geometry. These phase-spaces were first validated for use in MERT and MPERT applications, in which simulations using the phase-space source files were shown to model depth dose curves that agreed with measurement within 2%/2 mm and profile curves that agreed with measurement within 3%/3 mm. Simulated changes in output as a function of field size fell within 2.7%, for the most part. In order to inform the positioning of jaws in MLC-shaped electron field delivery, the change in output as a function of jaw position for fixed MLC-apertures was investigated using the phase-space source files. In order to achieve maximum output and minimize treatment time, a jaw setting between 5 and 10 cm beyond the MLC- field setting is recommended at 6 MeV, while 5 cm or closer is recommended for 12 and 20 MeV with the caveat that output is most sensitive to jaw position when the jaws are very close to the MLC-field periphery. Additionally, output was found to be highly sensitive to jaw model. A change in divergence of the jaw faces from a point on the source plane to a 3x3 mm^2 square in the source plane changed the shape of the output curve dramatically. Finally, electron backscatter from the jaws into the monitor ionization chamber of the TrueBeam was measured and simulated to enable accurate absolute dose calculations. Two approaches were presented for measuring backscatter into the monitor ionization chamber without specialized electronics by turning o the dose and pulse forming network servos. Next, a technique was applied for simulating backscatter factors for the TrueBeam phase-space source models without the exact specifications of the monitor ionization chamber. By using measured backscatter factors, the forward dose component in a virtual chamber was determined and then used to calculate backscatter factors for arbitrary fields to within 0.21%. Backscatter from the jaws was found to contribute up to 2.6% of the overall monitor chamber signal. The measurement techniques employed were not sensitive enough to quantify backscatter from the MLC, however, Monte Carlo simulations predicted this contribution to be 0.3%, at most, verifying that this component can be neglected.en_US
dc.description.proquestcode0756en_US
dc.description.proquestemaillloyd.samantha@gmail.comen_US
dc.description.scholarlevelGraduateen_US
dc.identifier.bibliographicCitationSamantha A M Lloyd, Isabelle M Gagne, Magdalena Bazalova-Carter, and Sergei F Zavgorodni. Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Medical Physics, 43(6):2894-2903, 2016.en_US
dc.identifier.bibliographicCitationSamantha A M Lloyd, Sergei Zavgorodni, and Isabelle M Gagne. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics. Journal of Applied Clinical Medical Physics, 16(4):193-201, 2015.en_US
dc.identifier.bibliographicCitationSamantha A M Lloyd, Sergei Zavgorodni, and Isabelle M Gagne. Monte Carlo simulation of MLC-shaped TrueBeam electron fields benchmarked against measurement. arXiv:1406.6024.en_US
dc.identifier.bibliographicCitationSamantha A M Lloyd, Isabelle M Gagne, Magdalena Bazalova-Carter, and Sergei F Zavgorodni. Measured and Monte Carlo simulated electron backscatter to the monitor chamber for the varian TrueBeam linac. Physics in Medicine and Biology, 61:8779-8793, 2016en_US
dc.identifier.urihttp://hdl.handle.net/1828/7847
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectRadiation Therapyen_US
dc.subjectMedical Physicsen_US
dc.subjectMonte Carloen_US
dc.subjectElectronsen_US
dc.subjectMulti-Leaf Collimatorsen_US
dc.subjectModulated Electron Radiation Therapyen_US
dc.subjectElectron Backscatteren_US
dc.subjectPhase-spacesen_US
dc.subjectTrueBeamen_US
dc.titleMeasurement and Monte Carlo simulation of electron fields for modulated electron radiation therapyen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lloyd_Samantha_PhD_2017.pdf
Size:
8.49 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: