Search for single production of vector-like quarks decaying into Wb in pp collisions at s√ = 13 TeV with the ATLAS detector

dc.contributor.authorAaboud, M.
dc.contributor.authorAad, G.
dc.contributor.authorAbbott, B.
dc.contributor.authorAbdinov, O.
dc.contributor.authorAbeloos, B.
dc.contributor.authorAbhayasinghe, D.K.
dc.contributor.authorAbidi, S.H.
dc.contributor.authorAbouZeid, O.S.
dc.contributor.authorAbraham, N.L.
dc.contributor.authorAbramowicz, H.
dc.contributor.authorAlbert, Justin
dc.contributor.authorAnelli, Christopher R.
dc.contributor.authorChiu, Y.H.
dc.contributor.authorGhasemi Bostanabad, M.
dc.contributor.authorHamano, Kenji
dc.contributor.authorHill, Ewan Chin
dc.contributor.authorKeeler, Richard
dc.contributor.authorKowalewski, Robert
dc.contributor.authorLefebvre, Michel
dc.contributor.authoret al.
dc.date.accessioned2020-10-28T21:15:07Z
dc.date.available2020-10-28T21:15:07Z
dc.date.copyright2019en_US
dc.date.issued2019
dc.description.abstractA search for singly produced vector-like quarks Q, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the LHC in 2015 and 2016. The analysis targets Q → Wb decays where the W boson decays leptonically. No significant deviation from the expected Standard Model background is observed. Upper limits are set on the QWb coupling strength and the mixing between the Standard Model sector and a singlet T quark or a Y quark from a (B, Y) doublet or a (T, B, Y) triplet, taking into account the interference effects with the Standard Model background. The upper limits set on the mixing angle are as small as |sin θL| = 0.18 for a singlet T quark of mass 800 GeV, |sin θR| = 0.17 for a Y quark of mass 800 GeV in a (B, Y) doublet model and |sin θL| = 0.16 for a Y quark of mass 800 GeV in a (T, B, Y) triplet model. Within a (B, Y) doublet model, the limits set on the mixing parameter |sin θR| are comparable with the exclusion limits from electroweak precision observables in the mass range between about 900 GeV and 1250 GeV.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Sk lodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref.en_US
dc.identifier.citationAaboud, M., Aad, G., Abbott, B., Abdinov, O., Abeloos, B., Abhayasinghe, D. K., … Zwalinski, L. (2019). Search for single production of vector-like quarks decaying into Wb in pp collisions at s√s = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2019(5). https://doi.org/10.1007/JHEP05(2019)164en_US
dc.identifier.urihttps://doi.org/10.1007/JHEP05(2019)164
dc.identifier.urihttp://hdl.handle.net/1828/12273
dc.language.isoenen_US
dc.publisherJournal of High Energy Physicsen_US
dc.subjectExotics
dc.subjectHadron-Hadron scattering (experiments)
dc.subject.departmentDepartment of Physics and Astronomy
dc.titleSearch for single production of vector-like quarks decaying into Wb in pp collisions at s√ = 13 TeV with the ATLAS detectoren_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aaboud_M_JHighEnergyPhys_2019_12.pdf
Size:
1017.25 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: