Measurement of the W+W− production cross section in pp collisions at a centre-ofmass energy of √s = 13 TeV with the ATLAS experiments

dc.contributor.authorATLAS Collaboration
dc.contributor.authorAlbert, Justin
dc.contributor.authorDavid, Claire
dc.contributor.authorElliot, Alison A.
dc.contributor.authorFincke-Keeler, J.
dc.contributor.authorHamano, Kenji
dc.contributor.authorHill, Ewan Chin
dc.contributor.authorKeeler, Richard
dc.contributor.authorKowalewski, Robert
dc.contributor.authorKuwertz, E. S.
dc.contributor.authorKwan, Tony
dc.contributor.authorLeBlanc, Matthew Edgar
dc.contributor.authorLefebvre, Michel
dc.contributor.authorMcPherson, Robert A.
dc.contributor.authorPearce, James D.
dc.contributor.authorSeuster, Rolf
dc.contributor.authorSobie, Randall J.
dc.contributor.authorTrovatelli, M.
dc.contributor.authorVenturi, M.
dc.date.accessioned2020-03-25T04:49:31Z
dc.date.available2020-03-25T04:49:31Z
dc.date.copyright2017en_US
dc.date.issued2017
dc.description.abstractThe production of opposite-charge W-boson pairs in proton–proton collisions at TeV is measured using data corresponding to 3.16 fb−1 of integrated luminosity collected by the ATLAS detector at the CERN Large Hadron Collider in 2015. Candidate W-boson pairs are selected by identifying their leptonic decays into an electron, a muon and neutrinos. Events with reconstructed jets are not included in the candidate event sample. The cross-section measurement is performed in a fiducial phase space close to the experimental acceptance and is compared to theoretical predictions. Agreement is found between the measurement and the most accurate calculations available.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [72].en_US
dc.identifier.citationATLAS Collaboration. (2017). Observation of the hyperfine spectrum of antihydrogen. Physics Letters B, 773, 354-374. DOI: 10.1016/j.physletb.2017.08.047en_US
dc.identifier.urihttps://doi.org/10.1016/j.physletb.2017.08.047
dc.identifier.urihttp://hdl.handle.net/1828/11641
dc.language.isoenen_US
dc.publisherPhysics Letters Ben_US
dc.subject.departmentDepartment of Physics and Astronomy
dc.titleMeasurement of the W+W− production cross section in pp collisions at a centre-ofmass energy of √s = 13 TeV with the ATLAS experimentsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ATLAS_Collaboration_JPhysLetB_2017.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: