Search for new phenomena in dijet events using 37 fb^−1 of pp collision data collected at √s=13 TeV with the ATLAS detector

dc.contributor.authorAaboud, M.
dc.contributor.authorAlbert, Justin
dc.contributor.authorChiu, Y. H.
dc.contributor.authorElliot, Alison A.
dc.contributor.authorFincke-Keeler, J.
dc.contributor.authorHamano, Kenji
dc.contributor.authorHill, Ewan Chin
dc.contributor.authorKeeler, Richard
dc.contributor.authorKowalewski, Robert
dc.contributor.authorKuwertz, E. S.
dc.contributor.authorKwan, Tony
dc.contributor.authorLeBlanc, Matthew Edgar
dc.contributor.authorLefebvre, Michel
dc.contributor.authorMcPherson, Robert A.
dc.contributor.authorSeuster, Rolf
dc.contributor.authorSobie, Randall J.
dc.contributor.authorTrovatelli, M.
dc.contributor.authorVenturi, M.
dc.contributor.authoret al.
dc.contributor.authorATLAS Collaboration
dc.date.accessioned2020-01-20T20:22:14Z
dc.date.available2020-01-20T20:22:14Z
dc.date.copyright2017en_US
dc.date.issued2017
dc.description.abstractDijet events are studied in the proton-proton collision data set recorded at √s=13  TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5  fb−1 and 33.5  fb−1 respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The data set is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy W′ bosons, W∗ bosons, and a range of masses and couplings in a Z′ dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref.en_US
dc.identifier.citationAaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; … & Zwalinski, L. (2017). Search for new phenomena in dijet events using 37 fb−1 of pp collision data collected at √s=13 TeV with the ATLAS detector. Physical Review D, 96(5), article 52004. DOI: 10.1103/PhysRevD.96.052004en_US
dc.identifier.urihttps://doi.org/10.1103/PhysRevD.96.052004
dc.identifier.urihttp://hdl.handle.net/1828/11498
dc.language.isoenen_US
dc.publisherPhysical Review Den_US
dc.subjectHadron-hadron interactions
dc.subjectHadronic decays
dc.subjectHypothetical particle physics models
dc.subjectQuark & gluon jets
dc.subject.departmentDepartment of Physics and Astronomy
dc.titleSearch for new phenomena in dijet events using 37 fb^−1 of pp collision data collected at √s=13 TeV with the ATLAS detectoren_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
aaboud_m_physrevd_2017i.pdf
Size:
1001.89 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: