Centralizing maps in prime rings with involution

dc.contributor.authorBresar, M.
dc.contributor.authorMartindale, W. S.
dc.contributor.authorMiers, C. Robert
dc.date.accessioned2010-04-28T21:15:43Z
dc.date.available2010-04-28T21:15:43Z
dc.date.copyright1991en
dc.date.issued2010-04-28T21:15:43Z
dc.description.abstractLet R be a prime ring with involution, of characteristic \ne 2, with center Z, skew elements K, and extended centroid C. Theorem. Suppose [K,K] \ne {0} and f:K->K is an additive map such that [f(x),x] \in Z for all x \in K. Then, unless R is an order in a 16-dimensional central simple algebra, there exists \lambda \in C and an additive map \mu: K -> C such that f(x)=\lambda x + \mu(x) for all x \in K.en
dc.identifier.urihttp://hdl.handle.net/1828/2661
dc.language.isoenen
dc.relation.ispartofseriesDMS-586-IRen
dc.subjecttechnical reports (mathematics and statistics)
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleCentralizing maps in prime rings with involutionen
dc.typeTechnical Reporten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DMS-586-IR.pdf
Size:
761.46 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Item-specific license agreed upon to submission
Description: