Some integral inequalities in V-fractional calculus and their applications

dc.contributor.authorSrivastava, Hari Mohan
dc.contributor.authorMohammed, Pshtiwan Othman
dc.contributor.authorAlmutairi, Ohud
dc.contributor.authorKashuri, Artion
dc.contributor.authorHamed, Y.S.
dc.date.accessioned2022-10-27T16:06:17Z
dc.date.available2022-10-27T16:06:17Z
dc.date.copyright2022en_US
dc.date.issued2022
dc.description.abstractWe consider the Steffensen–Hayashi inequality and remainder identity for V-fractional differentiable functions involving the six parameters truncated Mittag–Leffler function and the Gamma function. In view of these, we obtain some integral inequalities of Steffensen, Hermite–Hadamard, Chebyshev, Ostrowski, and Grüss type to the V-fractional calculus.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationSrivastava, H., Mohammed, P., Almutairi, O., Kashuri, A., & Hamed, Y. (2022). “Some integral inequalities in fractional calculus and their applications.” Mathematics, 10(3), 344. https://doi.org/10.3390/math10030344en_US
dc.identifier.urihttps://doi.org/10.3390/math10030344
dc.identifier.urihttp://hdl.handle.net/1828/14323
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectV-fractional derivative
dc.subjectV-fractional integral
dc.subjecttruncated Mittag–Leffler function
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleSome integral inequalities in V-fractional calculus and their applicationsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Srivastava_Hari_Mathematics_2022.pdf
Size:
403.14 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: