Phosphinoborane interception at magnesium by borane-assisted phosphine-borane dehydrogenation




Morris, Louis J.
Rajabi, Nasir A.
Hill, Michael S.
Manners, Ian
McMullin, Claire L.
Mahon, Mary F.

Journal Title

Journal ISSN

Volume Title


Dalton Transactions


Reactions of B(C6F5)3 with the β-diketiminato (BDI) alkaline-earth phosphidoborane complexes, 1a [(BDI)Ca(H3B·PPh2)] and 1b [(BDI)Mg(H3B·PPh2)]2 (BDI = [HC{C(CH3)N(2,6-iPr-C6H3)}2]−) result in the formation of phosphinodiboronate complexes 4a [(BDI)Ca(η6-toluene){H3B·PPh2·B(C6F5)3}] and 4b [(BDI)Mg{H3B·PPh2·B(C6F5)3}]. Calcium complex 4a is stable in aromatic solvents at room temperature and does not display well-defined onward reactivity at elevated temperatures. Magnesium complex 4b undergoes a room temperature transformation to provide the known hydridoborate derivative 3b [(BDI)Mg{HB(C6F5)3}] and an N,P,N’-ligated species, 5 [{HC(C(CH3)N(2,6-iPr-C6H3))2(H2BPPh2)}Mg{H3B·PPh2·B(C6F5)3}] that results from interception of the putative phosphinoborane, H2B = PPh2, by the BDI ligand backbone following B(C6F5)3-mediated hydride abstraction. NMR spectroscopic investigations were supported by DFT calculations, which suggested a mechanism involving B(C6F5)3 migration and hydride abstraction within the coordination sphere of magnesium. Interception of H2B = PPh2 by B(C6F5)3 is proposed to stabilise this species, whilst activating it towards ligand-centred nucleophilic attack. The significant stabilisation energy calculated for the Ca-π(toluene) interaction in 4a accounts for the contrasting outcomes between the two Ae-elements. The crystal structures of compounds 4a and 5 are presented and discussed.




Morris, L. J., Rajabi, N. A., Hill, M. S., Manners, I., McMullin, C. L., & Mahon M. F. (2020). Phosphinoborane interception at magnesium by borane-assisted phosphineborane dehydrogenation. Dalton Transactions, 49(41).