On the boundary value problem of nonlinear fractional integro-differential equations

dc.contributor.authorLi, Chenkuan
dc.contributor.authorSaadati, Reza
dc.contributor.authorSrivastava, Rekha
dc.contributor.authorBeaudin, Joshua
dc.date.accessioned2022-11-02T16:41:38Z
dc.date.available2022-11-02T16:41:38Z
dc.date.copyright2022en_US
dc.date.issued2022
dc.description.abstractUsing Banach’s contractive principle and the Laray–Schauder fixed point theorem, we study the uniqueness and existence of solutions to a nonlinear two-term fractional integro-differential equation with the boundary condition based on Babenko’s approach and the Mittag–Leffler function. The current work also corrects major errors in the published paper dealing with a one-term differential equation. Furthermore, we provide examples to illustrate the application of our main theorems.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipChenkuan Li is supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 2019-03907).en_US
dc.identifier.citationLi, C., Saadati, R., Srivastava, R., & Beaudin, J. (2022). “On the boundary value problem of nonlinear fractional integro-differential equations.” Mathematics, 10(12), 1971. https://doi.org/10.3390/math10121971en_US
dc.identifier.urihttps://doi.org/10.3390/math10121971
dc.identifier.urihttp://hdl.handle.net/1828/14371
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectLiouville-Caputo integro-differential equation
dc.subjectLaray-Schauder fixed point theorem
dc.subjectBanach's contractive principle
dc.subjectMittag-Leffler function
dc.subjectBabenko's approach
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleOn the boundary value problem of nonlinear fractional integro-differential equationsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Srivastava_Rekha_Mathematics_2022_2.pdf
Size:
369.8 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: