What does crowdsourced data tell us about bicycling injury? A case study in a mid-sized Canadian city

Date

2020

Authors

Fischer, Jaimy
Nelson, Trisalyn
Laberee, Karen
Winters, Meghan

Journal Title

Journal ISSN

Volume Title

Publisher

Accident Analysis & Prevention

Abstract

With only ∼20 % of bicycling crashes captured in official databases, studies on bicycling safety can be limited. New datasets on bicycling incidents are available via crowdsourcing applications, with opportunity for analyses that characterize reporting patterns. Our goal was to characterize patterns of injury in crowdsourced bicycle incident reports from BikeMaps.org. We extracted 281 incidents reported on the BikeMaps.org global mapping platform and analyzed 21 explanatory variables representing personal, trip, route, and crash characteristics. We used a balanced random forest classifier to classify three outcomes: (i) collisions resulting in injury requiring medical treatment; (ii) collisions resulting in injury but the bicyclist did not seek medical treatment; and (iii) collisions that did not result in injury. Results indicate the ranked importance and direction of relationship for explanatory variables. By knowing conditions that are most associated with injury we can target interventions to reduce future risk. The most important reporting pattern overall was the type of object the bicyclist collided with. Increased probability of injury requiring medical treatment was associated with collisions with animals, train tracks, transient hazards, and left-turning motor vehicles. Falls, right hooks, and doorings were associated with incidents where the bicyclist was injured but did not seek medical treatment, and conflicts with pedestrians and passing motor vehicles were associated with minor collisions with no injuries. In Victoria, British Columbia, Canada, bicycling safety would be improved by additional infrastructure to support safe left turns and around train tracks. Our findings support previous research using hospital admissions data that demonstrate how non-motor vehicle crashes can lead to bicyclist injury and that route characteristics and conditions are factors in bicycling collisions. Crowdsourced data have potential to fill gaps in official data such as insurance, police, and hospital reports.

Description

Keywords

Bicycling safety, Citizen science, Crowdsourced, Injury

Citation

Fischer, J., Nelson, T., Laberee, K., & Winters, M. (2020). What does crowdsourced data tell us about bicycling injury? A case study in a mid-sized Canadian city. Accident Analysis & Prevention, 145, 1-8. https://doi.org/10.1016/j.aap.2020.105695.